[1]
D. B. Lee, K. B. Park, J. W. Jeong, et al. Mechanical and oxidation properties of Ti-xFe-ySi alloys, Mater. Sci. Eng. A 328 (2002) 161-168.
DOI: 10.1016/s0921-5093(01)01670-7
Google Scholar
[2]
F. C. Liu, L. H. He, X. Lin, et al. Study on microstructure and mechanical properties of arc deposition manufactured TC4 titanium alloy, Hot Working Technology 43(10) (2014) 1-5.
Google Scholar
[3]
Y. Li, Q. Song, S. Feng, et al. Effects of loading frequency and specimen geometry on high cycle and very high cycle fatigue life of a high strength titanium alloy. Materials (Basel) 11 (2018).
DOI: 10.3390/ma11091628
Google Scholar
[4]
J.Y. Xu, Z. Z. Shi, Z. B. Zhang, et al. Significant enhancement of high temperature oxidation resistance of pure titanium via minor addition of Nb and Si, Corros. Sci. 166 (2020) 108430.
DOI: 10.1016/j.corsci.2020.108430
Google Scholar
[5]
H. M. Wang, Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components, Acta Aeronautica et Astronautica Sinica 35(10) (2014) 2690-2698.
Google Scholar
[6]
O. Raimbault, S. Benayoun, K. Anselme, et al. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response, Mater. Sci. Eng. C 69 (2016) 311-320.
DOI: 10.1016/j.msec.2016.06.072
Google Scholar
[7]
T. Sathish, J. Jayaprakash, Multi period disassembly-to-order of end-of-life product based on scheduling to maximise the profit in reverse logistic operation, Int. J. Logist. Syst. Manage. 26(3) (2017) 402-419.
DOI: 10.1504/ijlsm.2017.081967
Google Scholar
[8]
B. Baufeld, E. Brandl, O.V.D Biest, Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition, J. Mater. Process. Technol. 211(6) (2011) 1146-1158.
DOI: 10.1016/j.jmatprotec.2011.01.018
Google Scholar
[9]
F. Wang, S. Williams, P. Colegrove, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V, Metall. Mater. Trans. A 44 (2013) 968-977.
DOI: 10.1007/s11661-012-1444-6
Google Scholar
[10]
P. Edwards, M. Ramulu. Fatigue performance evaluation of selective laser melted Ti-6Al-4V, Mater. Sci. Eng. A 598(26) (2014) 327-337.
DOI: 10.1016/j.msea.2014.01.041
Google Scholar
[11]
Y. Zhu, D. Liu, X. Tian, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy, Mater. Des. 56 (2014) 445-453.
DOI: 10.1016/j.matdes.2013.11.044
Google Scholar
[12]
J. Chen, R. Zhang, Q. Zhang, et al. Relationship among microstructure, defects and performance of Ti60 titanium alloy fabricated by laser solid forming, Rare Metal Materials and Engineering 43(003) (2014) 548-552.
DOI: 10.1016/s1875-5372(14)60074-6
Google Scholar
[13]
H. Suo, Z. Chen, J. Liu, et al. Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing, Rare Metal Materials and Engineering 43(4) (2014) 780-785.
DOI: 10.1016/s1875-5372(14)60083-7
Google Scholar
[14]
F. Wang, S. Williams, Paul Colegrove, Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V, Metall. Mater. Trans. A 44(2) (2013) 968-977.
DOI: 10.1007/s11661-012-1444-6
Google Scholar
[15]
H. Lockett, J. Ding, S. Williams, et al. Design for Wire + Arc Additive Manufacture: design rules and build orientation selection. J. Eng. Des. 4828 (2017) 1-31.
DOI: 10.1080/09544828.2017.1365826
Google Scholar
[16]
C. R. Cunningham, J. M. Flynn, A. Shokrani, et.al. Invited review article: strategies and processes for high quality wire arc additive manufacturing, Addit. Manuf. 22 (2018) 672-686.
DOI: 10.1016/j.addma.2018.06.020
Google Scholar
[17]
D. Ding, Z. Pan, D. Cui, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int. J. Adv. Des. Manuf. Technol. 81(1-4) (2015) 465-481.
DOI: 10.1007/s00170-015-7077-3
Google Scholar
[18]
S. W. Williams, F. Martina, A. C. Addison, et al. Wire+arc additive manufacturing, Mater. Sci. Technol. 32(7) (2016) 641-647.
Google Scholar
[19]
S. R. Singh, P. Khanna, Wire arc additive manufacturing (WAAM): A new process to shape engineering materials, Mater. Today: Proc. (2020), https://doi.org/10.1016/j.matpr.2020.08.030.
DOI: 10.1016/j.matpr.2020.08.030
Google Scholar
[20]
B. Wang, Study on wire arc additive manufacturing forming process of TC4 titanium alloy, Shenyang: Shenyang Aerospace University, (2018).
Google Scholar
[21]
R. Xia, Study on forming dimensions and process parameters optimization of wire arc additive manufacturing, Wuhan: Huazhong University of Science and Technology, (2016).
Google Scholar