Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Extruded Mg-3.5Zn-0.6Gd Alloy

Article Preview

Abstract:

The effect of cryogenic treatment (CT) on the microstructure and mechanical properties of the as-extruded Mg–3.5Zn–0.6Gd alloy was investigated. The results showed that W-phase newly appeared in cryogenic treatment samples but without notable second phase amount increasing. There was also no remarkable grain refinement. But the amount of twins reduced greatly, the strong basal texture {0001} rotated and increased. The intensity of plane (0002) diffraction peak was weakened along with planes ( 1 0-1 0 ) ( 1 0-1 1 ) being enhanced in X-ray diffraction pattern. The change in mechanical properties was not obvious. The mechanism of the microstructure evolution is discussed as well.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

175-181

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Bae, S.H. Kim, D.H. Kim, W.T. Kim, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles, Acta Materialia 50 (2002) 2343-2356.

DOI: 10.1016/s1359-6454(02)00067-8

Google Scholar

[2] H. Li, W. Du,S Li, Z.Wang, Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys, Materials & Design 35 (2012) 259-265.

DOI: 10.1016/j.matdes.2011.10.002

Google Scholar

[3] D.Luo, H.Y. Wang, L.G. Zhao, C. Wang, G.J. Liu, Y. Liu, Q.C. Jiang, Effect of differential speed rolling on the room and elevated temperature tensile properties of rolled AZ31 Mg alloy sheets, Materials Characterization 124 (2017) 223-228.

DOI: 10.1016/j.matchar.2016.12.007

Google Scholar

[4] Y.Jiang , D.Chen, Q.Jiang. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91. Metal Science and Heat Treatment 53 (2012) 589-591.

DOI: 10.1007/s11041-012-9439-x

Google Scholar

[5] Z. H. Chen, .iK. Zhang, J.Z. Liu, D. Chen, Cryogenic treatment induced hardening for Cu-Zr-Ag-Al bulk metallic glasses. Sci. China Technol. Sci. 56 (2013) 637-641.

DOI: 10.1007/s11431-012-5107-z

Google Scholar

[6] E.M. Padezhnova, E.V. Melnik, R.A. Miliyevskiy, Investigation of the Mg-Y-Zn system , Russian Metallurgy. 4 (1982)185-188.

Google Scholar

[7] D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys, Materials Science and Engineering: A. 443 (2007) 248-256.

DOI: 10.1016/j.msea.2006.08.037

Google Scholar

[8] H.S. Jiang, X.G. Qiao, C. Xu, Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion, J. Mater. Sci. Technol. 34 (2018) 277-283.

DOI: 10.1016/j.jmst.2017.11.022

Google Scholar

[9] W.J. Kim, H.G. Jeong, H.T. Jeong, Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging,Scripta Materialia. 61 (2009) 1040-1043.

DOI: 10.1016/j.scriptamat.2009.08.020

Google Scholar

[10] Y. Liu, G.Y. Yuan, C. Lu, W.J. Ding, J.Z. Jiang, The role of nanoquasicrystals on the ductility enhancement of as-extruded Mg-Zn-Gd alloy at elevated temperature, J. Mater. Sci. 43 (2008) 5527-5533.

DOI: 10.1007/s10853-008-2839-z

Google Scholar

[11] V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill, Journal of Materials Processing Technology. 206 (2008) 467-472.

DOI: 10.1016/j.jmatprotec.2007.12.072

Google Scholar

[12] K. M. Asl, A.Tari, F. Khomamizadeh, Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy, Materials Science and Engineering: A 523 (2009) 27-31.

DOI: 10.1016/j.msea.2009.06.003

Google Scholar

[13] Z. S. Zhang, P. S. Zhi, X. F. Gu, J. Y. Chang, W. Z. Zhang, Row-matching in pyramidal Mg2Sn precipitates in Mg-Sn-Zn alloys, J. Mater. Sci 52 (2017) 7110-7117.

DOI: 10.1007/s10853-017-0943-7

Google Scholar

[14] J. Zhu, J. B. Chen, T. Liu, J. X. Liu, W. Y. Wang, Z. K. Liu, X. D. Hui, High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology,Materials Science and Engineering: A 679 (2017) 476-483.

DOI: 10.1016/j.msea.2016.10.071

Google Scholar

[15] J. Farjas, P. Roura, Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution, Acta Materialia 54 (2006) 5573-5579.

DOI: 10.1016/j.actamat.2006.07.037

Google Scholar

[16] N. Yumak, K. Aslantas, Y. Pekbey, Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti-6Al-4V alloy, Transactions of Nonferrous Metals Society of China. 27 (2017) 514-526.

DOI: 10.1016/s1003-6326(17)60058-x

Google Scholar

[17] C. M. Li, N. P. Cheng, Z. Q. Chen, N. Guo, S. M. Zeng, Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. Int. J. Miner. Metall. Mater. 22 (2015) 68-77.

DOI: 10.1007/s12613-015-1045-7

Google Scholar

[18] J. F. Nie, Y. M. Zhu and J.Z .Liu, Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (2013) 957-960.

DOI: 10.1126/science.1229369

Google Scholar

[19] Y. Liu, S. Shao, C. S. Xu, X. S. Zeng, X.J. Yang, Effect of cryogenic treatment on the microstructure and mechanical properties of Mg-1.5Zn-0.15Gd magnesium alloy, Materials Science and Engineering: A. 588 (2013) 76-81.

DOI: 10.1016/j.msea.2013.09.018

Google Scholar

[20] Y. C. Huang, Y. Li, X. W. Ren, Z.B. Xiao, Effect of Deep Cryogenic Treatment on Aging Processes of Al-Mg-Si Alloy, Phys. Metals Metallogr. 120 (2019) 914-918.

DOI: 10.1134/s0031918x19070111

Google Scholar

[21] Ehsan. Izadi, Amith. Darbal, Rohit. Sarkar, Jagannathan. Rajagopalan, Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping, Materials & Design. 113 (2017) 186-194.

DOI: 10.1016/j.matdes.2016.10.015

Google Scholar

[22] P. W. Hoffrogge, L. A. Barrales-Mora, Grain-resolved kinetics and rotation during grain growth of nanocrystalline Aluminium by molecular dynamics, Computational Materials Science 128 (2017) 207-222.

DOI: 10.1016/j.commatsci.2016.11.027

Google Scholar

[23] F. Q. Yang, Effect of Electric Current on Trijunction Equilibrium and Grain Rotation of Lossy Dielectrics. Journal of Elec. Materi. 43 (2014) 4497-4501.

DOI: 10.1007/s11664-014-3445-2

Google Scholar