[1]
D.H. Bae, S.H. Kim, D.H. Kim, W.T. Kim, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles, Acta Materialia 50 (2002) 2343-2356.
DOI: 10.1016/s1359-6454(02)00067-8
Google Scholar
[2]
H. Li, W. Du,S Li, Z.Wang, Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys, Materials & Design 35 (2012) 259-265.
DOI: 10.1016/j.matdes.2011.10.002
Google Scholar
[3]
D.Luo, H.Y. Wang, L.G. Zhao, C. Wang, G.J. Liu, Y. Liu, Q.C. Jiang, Effect of differential speed rolling on the room and elevated temperature tensile properties of rolled AZ31 Mg alloy sheets, Materials Characterization 124 (2017) 223-228.
DOI: 10.1016/j.matchar.2016.12.007
Google Scholar
[4]
Y.Jiang , D.Chen, Q.Jiang. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91. Metal Science and Heat Treatment 53 (2012) 589-591.
DOI: 10.1007/s11041-012-9439-x
Google Scholar
[5]
Z. H. Chen, .iK. Zhang, J.Z. Liu, D. Chen, Cryogenic treatment induced hardening for Cu-Zr-Ag-Al bulk metallic glasses. Sci. China Technol. Sci. 56 (2013) 637-641.
DOI: 10.1007/s11431-012-5107-z
Google Scholar
[6]
E.M. Padezhnova, E.V. Melnik, R.A. Miliyevskiy, Investigation of the Mg-Y-Zn system , Russian Metallurgy. 4 (1982)185-188.
Google Scholar
[7]
D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys, Materials Science and Engineering: A. 443 (2007) 248-256.
DOI: 10.1016/j.msea.2006.08.037
Google Scholar
[8]
H.S. Jiang, X.G. Qiao, C. Xu, Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion, J. Mater. Sci. Technol. 34 (2018) 277-283.
DOI: 10.1016/j.jmst.2017.11.022
Google Scholar
[9]
W.J. Kim, H.G. Jeong, H.T. Jeong, Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging,Scripta Materialia. 61 (2009) 1040-1043.
DOI: 10.1016/j.scriptamat.2009.08.020
Google Scholar
[10]
Y. Liu, G.Y. Yuan, C. Lu, W.J. Ding, J.Z. Jiang, The role of nanoquasicrystals on the ductility enhancement of as-extruded Mg-Zn-Gd alloy at elevated temperature, J. Mater. Sci. 43 (2008) 5527-5533.
DOI: 10.1007/s10853-008-2839-z
Google Scholar
[11]
V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill, Journal of Materials Processing Technology. 206 (2008) 467-472.
DOI: 10.1016/j.jmatprotec.2007.12.072
Google Scholar
[12]
K. M. Asl, A.Tari, F. Khomamizadeh, Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy, Materials Science and Engineering: A 523 (2009) 27-31.
DOI: 10.1016/j.msea.2009.06.003
Google Scholar
[13]
Z. S. Zhang, P. S. Zhi, X. F. Gu, J. Y. Chang, W. Z. Zhang, Row-matching in pyramidal Mg2Sn precipitates in Mg-Sn-Zn alloys, J. Mater. Sci 52 (2017) 7110-7117.
DOI: 10.1007/s10853-017-0943-7
Google Scholar
[14]
J. Zhu, J. B. Chen, T. Liu, J. X. Liu, W. Y. Wang, Z. K. Liu, X. D. Hui, High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology,Materials Science and Engineering: A 679 (2017) 476-483.
DOI: 10.1016/j.msea.2016.10.071
Google Scholar
[15]
J. Farjas, P. Roura, Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution, Acta Materialia 54 (2006) 5573-5579.
DOI: 10.1016/j.actamat.2006.07.037
Google Scholar
[16]
N. Yumak, K. Aslantas, Y. Pekbey, Effect of cryogenic and aging treatments on low-energy impact behaviour of Ti-6Al-4V alloy, Transactions of Nonferrous Metals Society of China. 27 (2017) 514-526.
DOI: 10.1016/s1003-6326(17)60058-x
Google Scholar
[17]
C. M. Li, N. P. Cheng, Z. Q. Chen, N. Guo, S. M. Zeng, Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. Int. J. Miner. Metall. Mater. 22 (2015) 68-77.
DOI: 10.1007/s12613-015-1045-7
Google Scholar
[18]
J. F. Nie, Y. M. Zhu and J.Z .Liu, Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (2013) 957-960.
DOI: 10.1126/science.1229369
Google Scholar
[19]
Y. Liu, S. Shao, C. S. Xu, X. S. Zeng, X.J. Yang, Effect of cryogenic treatment on the microstructure and mechanical properties of Mg-1.5Zn-0.15Gd magnesium alloy, Materials Science and Engineering: A. 588 (2013) 76-81.
DOI: 10.1016/j.msea.2013.09.018
Google Scholar
[20]
Y. C. Huang, Y. Li, X. W. Ren, Z.B. Xiao, Effect of Deep Cryogenic Treatment on Aging Processes of Al-Mg-Si Alloy, Phys. Metals Metallogr. 120 (2019) 914-918.
DOI: 10.1134/s0031918x19070111
Google Scholar
[21]
Ehsan. Izadi, Amith. Darbal, Rohit. Sarkar, Jagannathan. Rajagopalan, Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping, Materials & Design. 113 (2017) 186-194.
DOI: 10.1016/j.matdes.2016.10.015
Google Scholar
[22]
P. W. Hoffrogge, L. A. Barrales-Mora, Grain-resolved kinetics and rotation during grain growth of nanocrystalline Aluminium by molecular dynamics, Computational Materials Science 128 (2017) 207-222.
DOI: 10.1016/j.commatsci.2016.11.027
Google Scholar
[23]
F. Q. Yang, Effect of Electric Current on Trijunction Equilibrium and Grain Rotation of Lossy Dielectrics. Journal of Elec. Materi. 43 (2014) 4497-4501.
DOI: 10.1007/s11664-014-3445-2
Google Scholar