Effect of Precursor Design on Preparing Open-Cell Aluminum Foam Fabricated by Space-Holder Method

Article Preview

Abstract:

Open-cell aluminum foams with spherical cells have great potential application due to their reliable structural and functional performance. However, a problem of poor cell connectivity always arises during fabrication. Three precursor designs were explored to optimize the cell structure. The results showed that the lack of the treatment of the space holders caused poor cell connectivity and a lower porosity, which could be resolved by introducing alcohol as a binder or hot-pressing space holders in precursor designs. Nevertheless, a poor fluid of the granules in the former had a negative effect on porosity improvement, whereas the latter created a precursor with strong bonding between the granules with good flow characteristics and led to a significant improvement in cell connectivity and porosity. This work could provide an approach to designing precursor structures in order to tailor the structure of the final open-cell aluminum foam.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

169-174

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Matheson, K.K. Cross, M.M. Nowell, A.D. Spear, A multiscale comparison of stochastic open-cell aluminum foam produced via conventional and additive-manufacturing routes, Mater. Sci. Eng. A 707 (2017) 181-192.

DOI: 10.1016/j.msea.2017.08.102

Google Scholar

[2] T. Wan, Y. Liu, C. X. Zhou, X. Chen, Y. X. Li, Fabrication, properties, and applications of open-cell aluminum foams: A review, J. Mater. Sci. Technol. 62 (2021) 11-24.

Google Scholar

[3] R. Kumar, H. Jain, S. Sriram, A. Chaudhary, A. Khare, V.A.N. Ch, D.P. Mondal, Lightweight open cell aluminum foam for superior mechanical and electromagnetic interference shielding properties, Mater. Chem. Phys. 240 (2020) 122274.

DOI: 10.1016/j.matchemphys.2019.122274

Google Scholar

[4] Hamadouche, R. Nebbali, H. Benahmed, A. Kouidri, A. Bousri, Experimental investigation of convective heat transfer in an open-cell aluminum foams, Exp. Therm. Fluid Sci. 71 (2016) 86-94.

DOI: 10.1016/j.expthermflusci.2015.10.009

Google Scholar

[5] H. Bafti, A. Habibolahzadeh, Compressive properties of aluminum foam produced by powder-Carbamide spacer route, Mater. Des. 52 (2013) 404-411.

DOI: 10.1016/j.matdes.2013.05.043

Google Scholar

[6] Jiang, Z. Wang, N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scr. Mater. 56 (2007) 169-172.

DOI: 10.1016/j.scriptamat.2006.08.070

Google Scholar

[7] Z. Fan, B. Zhang, Y. Gao, X. Guan, P. Xu, Deformation mechanisms of spherical cell porous aluminum under quasi-static compression, Scr. Mater. 142 (2018) 32-35.

DOI: 10.1016/j.scriptamat.2017.08.019

Google Scholar

[8] Y.Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams, Scr. Mater. 44 (2001) 105-110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar

[9] Jiang, N. Zhao, C. Shi, J. Li, Processing of open cell aluminum foams with tailored porous morphology, Scr. Mater. 53 (2005) 781-785.

DOI: 10.1016/j.scriptamat.2005.04.055

Google Scholar

[10] S.F. Fischer, Energy absorption efficiency of open-cell pure aluminum foams, Mater. Lett. 184 (2016) 208-210.

DOI: 10.1016/j.matlet.2016.08.061

Google Scholar

[11] Q. Fabrizio, A. Boschetto, L. Rovatti, L. Santo, Replication casting of open-cell AlSi7Mg0.3 foams, Mater. Lett. 65 (2011) 2558-2561.

DOI: 10.1016/j.matlet.2011.05.057

Google Scholar

[12] San Marchi, A. Mortensen, Deformation of open-cell aluminum foam, Acta Mater. 49 (2001) 3959-3969.

DOI: 10.1016/s1359-6454(01)00294-4

Google Scholar

[13] J. Banhart, Properties and applications of cast aluminum sponges, Adv. Eng. Mater. 2 (2000) 188-191.

DOI: 10.1002/(sici)1527-2648(200004)2:4<188::aid-adem188>3.0.co;2-g

Google Scholar

[14] B. Xie, Y.Z. Fan, T.Z. Mu, B. Deng, Fabrication and energy absorption properties of titanium foam with CaCl2 as a space holder, Mater. Sci. Eng. A 708 (2017) 419-423.

DOI: 10.1016/j.msea.2017.09.123

Google Scholar

[15] L. Stanev, M. Kolev, B. Drenchev, L. Drenchev, Open-Cell Metallic Porous Materials Obtained Through Space Holders—Part I: Production Methods. A Review, J. Manuf. Sci. E. 139 (2016) 050801.

DOI: 10.1115/1.4034439

Google Scholar

[16] R. Goodall, A. Marmottant, L. Salvo, A. Mortensen, Spherical pore replicated microcellular aluminium: Processing and influence on properties, Mater. Sci. Eng. A 465 (2007) 124-135.

DOI: 10.1016/j.msea.2007.02.002

Google Scholar

[17] J.O. Osorio-Hernández, M.A. Suarez, R. Goodall, G.A. Lara-Rodriguez, I. Alfonso, I.A. Figueroa, Manufacturing of open-cell Mg foams by replication process and mechanical properties, Mater. Des. 64 (2014) 136-141.

DOI: 10.1016/j.matdes.2014.07.015

Google Scholar

[18] J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Influence of the infiltration pressure on the structure and properties of replicated aluminium foams, Mater. Sci. Eng. A 462 (2007) 68-75.

DOI: 10.1016/j.msea.2006.03.157

Google Scholar

[19] A. Marmottant, L. Salvo, C.L. Martin, A. Mortensen, Coordination measurements in compacted NaCl irregular powders using X-ray microtomography, J. Eur. Ceram. Soc. 28 (2008) 2441-2449.

DOI: 10.1016/j.jeurceramsoc.2008.03.041

Google Scholar

[20] R. Goodall, J.F. Despois, A. Mortensen, Sintering of NaCl powder: Mechanisms and first stage kinetics, J. Eur. Ceram. Soc. 26 (2006) 3487-3497.

DOI: 10.1016/j.jeurceramsoc.2005.12.020

Google Scholar