[1]
Kok Y, Tan X, Tor S B, et al. Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting[J]. Virtual & Physical Prototyping, 2015, 10(1): 13-21.
DOI: 10.1080/17452759.2015.1008643
Google Scholar
[2]
Al-Bermani S S, Blackmore M L, Todd W Z. The origin of microstructural diversity, texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V[J]. Metallurgical & Materials Transactions A, 2010. 41(13): 3422-3434.
DOI: 10.1007/s11661-010-0397-x
Google Scholar
[3]
H.P. Tang, G.Y. Yang, W.P. Jia, et al. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting[J]. Material science & Engineering A 2015, 636(11): 103-107.
DOI: 10.1016/j.msea.2015.03.079
Google Scholar
[4]
Guo C, Lin F, Ge W J, et al. Development of novel EBSM system for high-tech material additive manufacturing research[C]. The 2014 Annual International Solid Freeform Fabrication Symposium. (2014).
Google Scholar
[5]
R.E. Shuster, S.L. Cockcroft, D.M. Maijer, et al. A three-dimensional transient thermal-fluid flow-compositional study of ingot casting during electron beam remelting of Ti–6Al–4V[J]. Applied Mathematical Modeling, 2016, 40(21-22): 9095-9117.
DOI: 10.1016/j.apm.2016.05.037
Google Scholar
[6]
Li-Min J, Da-Ming X U, Jing-Jie G, et al. Effect of cooling rate on structure and tensile strength of centrifugally cast TC4 alloy in ceramic-shell mold[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 667-673.
Google Scholar
[7]
Qufang L, Peng F, Du Zhaoxin. High temperature deformation and heat treatment behavior of forged Ti6Al4V alloy[J]. Heat Treatment of Metals, 2019, 44(04): 52-58.
Google Scholar
[8]
H. K. Rafi, N. V. Karthik, Haijun Gong, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. 2013, 22(12): 3872-3883.
DOI: 10.1007/s11665-013-0658-0
Google Scholar
[9]
Safdar A, Wei L Y, Snis A, et al. Evaluation of microstructural development in electron beam melted Ti6Al4V[J]. Materials Characterization, 2012, 65: 8-15.
DOI: 10.1016/j.matchar.2011.12.008
Google Scholar
[10]
Kok Y, Tan X, Tor S B, et al. Fabrication and microstructural characterization of additive manufactured Ti6Al4V parts by electron beam melting[J]. Virtual and Physical Prototyping, 2014, 10(1): 13-21.
DOI: 10.1080/17452759.2015.1008643
Google Scholar
[11]
Barba D, Alabort C, Tang Y T, et al. On the size and orientation effect in additive manufactured Ti6Al4V[J]. Materials & Design, 2020, 186: 108235.
DOI: 10.1016/j.matdes.2019.108235
Google Scholar
[12]
Gong H, Rafi K, Gu H, et al. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014,1-4: 87-98.
DOI: 10.1016/j.addma.2014.08.002
Google Scholar
[13]
Gong H, Rafi K, Gu H, et al. Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting[J]. Materials & Design, 2015, 86: 545-554.
DOI: 10.1016/j.matdes.2015.07.147
Google Scholar
[14]
Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.
DOI: 10.1016/j.actamat.2014.12.054
Google Scholar
[15]
Mok S H, Bi G, Folkes J, et al. Deposition of Ti6Al4V using a high-power diode laser and wire, Part I: Investigation on the process characteristics[J]. 2008, 202(16): 3933-3939.
DOI: 10.1016/j.surfcoat.2008.02.008
Google Scholar
[16]
Qi Z, Zheng-long L, Miao C, et al. Microstructure and mechanical properties of Ti–6Al–4V parts build by selective laser melting [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(05): 1036-1042.
DOI: 10.1016/s1003-6326(17)60121-3
Google Scholar
[17]
Tammas-Williams S, Zhao H, Léonard F, et al. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting[J]. Materials Characterization, 2015, 102: 47-61.
DOI: 10.1016/j.matchar.2015.02.008
Google Scholar
[18]
P W, S N M L, J S W. Effect of building height on microstructure and mechanical properties of big-sized Ti6Al4V plate fabricated by electron beam melting[J]. 2015, 30: (2001).
Google Scholar
[19]
L Z, Bieler T R. Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α', α" and β phases in Ti–6Al–4V wire[J]. Materials Science and Engineering: A, 2005, 392(1-2): 403-414.
DOI: 10.1016/j.msea.2004.09.072
Google Scholar
[20]
D S S, O K L, L A. X-ray diffraction measurements of plasma-nitride Ti–6Al–4V[J]. Surface & Coatings Technology, 1999(116-119): 342-346.
DOI: 10.1016/s0257-8972(99)00204-2
Google Scholar
[21]
P D G, L S, J M. Fabrication of Ti6Al4V scaffolds by direct metal deposition[J]. Metallurgical & Materials Transactions A, 2008, 39(12): 2914-2922.
Google Scholar
[22]
Tan X, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting[J]. 2015, 97: 1-16.
DOI: 10.1016/j.actamat.2015.06.036
Google Scholar
[23]
L Z Y, Z C, J Q S. Microstructure and cyclic deformation behavior of a 3D-printed Ti–6Al–4V alloy[J]. Journal of Alloys and Compounds, 2020, 825: 153971.
DOI: 10.1016/j.jallcom.2020.153971
Google Scholar
[24]
Y K, X T, B T S. Fabrication and microstructural characterization of additive manufactured Ti6Al4V parts by electron beam melting[J]. Virtual & Physical Prototyping, 2015, 10(1): 13-21.
Google Scholar
[25]
Moletsane M G, Krakhmalev P, Kazaantseva N, et al. Tensile properties and microstructure of direct metal laser sintered Ti6Al-4V (ELI) alloy[J]. South African Journal of industrial Engineering, 2016: 110-121.
DOI: 10.7166/27-3-1667
Google Scholar
[26]
B V, L T, P K J. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012,541(541): 177-185.
DOI: 10.1016/j.jallcom.2012.07.022
Google Scholar
[27]
E M L, V E E, A Q S. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V[J]. Materials Characterization, 2009, 60(2): 96-105.
DOI: 10.1016/j.matchar.2008.07.006
Google Scholar