Microstructure Evolution and Mechanical Properties of Mg-10.37Gd-3.66Y-2.27Zn-0.52Zr Alloy during Reciprocating Upsetting-Extrusion

Article Preview

Abstract:

The homogenized Mg-10.37Gd-3.66Y-2.27Zn-0.52Zr alloy was subjected to multi-passes reciprocating upsetting extrusion (RUE) deformation with variable temperature. The microstructure evolution and mechanical properties of as-homogenized and RUEed samples were investigated. The results showed that the area fraction of DRX grains gradually increased via the continuous consumption of coarse grains containing lamellar LPSO, and the content of the bulk LPSO phases gradually decreased due to continuous fragmentation. After three passes deformation, the microstructure was almost composed of completely DRXed grains. The LPSO phases with different morphologies were coordinated deformation by kinking, tearing, etc during RUE process. It is worth noting that after four passes, the lamellar LPSO phase did not disappear, but mixed with the fine DRXed grains together. In addition, a mass of particles were produced after each low temperature deformation, indicating that reducing the deformation temperature is beneficial to the dynamic precipitation. The yield tensile strength (TYS), Ultimate tensile strength (UTS) and fracture elongation (FE) of four passes deformed alloy reached 372.6 MPa, 320.8 MPa, 8.1%, respectively. The improvement of mechanical properties is attributed to the two main strengthening mechanisms: grain refinement and LPSO strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

264-272

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Huo, X. Yang, J. Wang, H. Sun, J. Guo, L. Jiang, Mechanical behavior and deformation mechanisms of AZ31 Mg alloy at liquid nitrogen temperature, Mater.Lett. 109 (2013) 78–82.

DOI: 10.1016/j.matlet.2013.07.029

Google Scholar

[2] D. Zhang, X. Yang, Z. Fang, Z. Xiao, Y. Yang, T. Sakai, Effect of heat treatment on dynamic recrystallization behaviors and mechanical properties of Mg–2.7Nd–0.5Zn–0.8Zr alloy, Mater. Sci. Eng. A. 675 (2016) 128–137.

DOI: 10.1016/j.msea.2016.08.025

Google Scholar

[3] B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.F. Zheng, T.F. Xi, Influence of Zn content on microstructure and tensile properties of Mg-Zn-Y-Nd alloy, Acta Metall. Sin. 31 (2018) 1-11.

DOI: 10.1007/s40195-018-0713-9

Google Scholar

[4] C.P. Wang, H.S. Mei, R.Q. Li, D.F. Li, L. Wang, J. Liu, H.Z. Hui, L.J. Zhao, F.F. Pen, H. Li, Microstructure evolution and grain coarsening behaviour during partical remelting of cyclic extrusion compression formed AZ61 magnesium alloy,Acta Metall. Sin. 26 (2013) 149e156.

DOI: 10.1007/s40195-012-0169-2

Google Scholar

[5] X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, What is the going on in magnesium alloys, J. Mater. Sci. Technol. 34 (2018) 245-247.

DOI: 10.1016/j.jmst.2017.07.019

Google Scholar

[6] C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Ultrahigh-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing, Mater. Sci. Eng. A. 547 (15) (2012) 93–98.

DOI: 10.1016/j.msea.2012.03.087

Google Scholar

[7] W. J. Ding, L. Jin, W. X. Wu, J. Dong, Texture and texture optimization of wrought Mg alloy, The Chinese Journal of Nonferrous Metals.21(2011) 2371-2381.

Google Scholar

[8] M.H. Maghsoudi, A. Zarei-Hanzaki, H.R. Abedi, A. Shamsolhodaei, The evolution of g-Mg17Al12 intermetallic compound during accumulative back extrusion and subsequent ageing treatment, Philos. Mag. 95 (2015) 3497-3523.

DOI: 10.1080/14786435.2015.1088665

Google Scholar

[9] M.H. Razmpoosh, A. Zarei-Hanzaki, A. Imandoust, Effect of the ZenereHollomon parameter on the microstructure evolution of dual phase TWIP steel subjected to friction stir processing, Mater. Sci. Eng. A 638 (2015) 15-19.

DOI: 10.1016/j.msea.2015.04.022

Google Scholar

[10] J.W. Yeh S Y Y, C. H. Peng, A Reciprocating Extrusion Process for Producing Hypereutectic Al-20wt0lo Si Wrought Alloys. Mater. Sci. Eng. A. 1998, 252: 212-21.

DOI: 10.1016/s0921-5093(98)00677-7

Google Scholar

[11] Z. D. Zhao, Z. X. Zhao, Q. Chen, Microstructure development and thixoextrusion of magnesium alloy prepared by repetitive upsetting-extrusion. Journal of Alloys Compounds. 2011,509(26):7303-7315.

DOI: 10.1016/j.jallcom.2011.04.113

Google Scholar

[12] M. Li, X. Wang, Q.Y. Feng, J. Wang, Z. Xu, P.H. Zhang, The effect of morphology of the long-period stacking ordered phase on mechanical properties of the Mg-7Gd-3Y-1Nd-1Zn-0.5Zr (wt.%) alloy, Mater. Char. 125 (2017) 123e133.

DOI: 10.1016/j.matchar.2017.01.032

Google Scholar

[13] Y.M. Zhu, A.J. Morton, J.F. Nie, The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys, Acta Mater. 58 (2010) 2936e2947.

DOI: 10.1016/j.actamat.2010.01.022

Google Scholar

[14] Z.B Ding, Y. H. Zhao, R. P. Lu, M. N. Yuan, Z. J. Wang, H. J. Li, H. Hou. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys, Transactions of Nonferrous Metals Society of China,2019,29(4).

DOI: 10.1016/s1003-6326(19)64982-4

Google Scholar

[15] B. B. Dong, Z. M. Zhang *, J. M. Yu, X. Che, M. Meng, J. L. Zhang, Microstructure, texture evolution and mechanical properties of multidirectional forged Mg-13Gd-4Ye2Zn-0.5Zr alloy under decreasing temperature, Journal of Alloys Compounds. 823(2020)153776.

DOI: 10.1016/j.jallcom.2020.153776

Google Scholar

[16] Y. Du, Z. M. Zhang, G.S. Zhang, J. M. Yu, Grain refinement and texture evolution of Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion at decreasing temperature. Rare Met. Mater. Eng. 47(2018)1422–1428.

DOI: 10.1016/s1875-5372(18)30144-9

Google Scholar

[17] H.C. Xiao, B. Tang, C. M. Liu, Y. H. Gao, S. L. Yu, S. N. Jiang, Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression, Mater. Sci. Eng. A. 645(2015) 241-247.

DOI: 10.1016/j.msea.2015.08.022

Google Scholar

[18] K. Hagihara, N. Yokotani, Y. Umakoshi, Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics. 18 (2010) 267-276.

DOI: 10.1016/j.intermet.2009.07.014

Google Scholar

[19] Liu, H. Ju, J. Yang, X. W. Yan, et al. A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg97Y2Zn1 alloy, Journal of Alloys and Compounds, 704(2017)509-517.

DOI: 10.1016/j.jallcom.2017.02.107

Google Scholar

[20] Zhou, XJ (Zhou, Xiaojie)1;Liu, CM (Liu, Chuming)1,2;Gao, YH (Gao, Yonghao)1;Jiang, SN (Jiang, Shunong)3;Chen, ZY (Chen, Zhiyong)1.Improved workability and ductility of the Mg-Gd-Y-Zn-Zr alloy via enhanced kinking and dynamic recrystallization[J].Journal of Alloys and Compounds.2018:878-886.

DOI: 10.1016/j.jallcom.2018.03.359

Google Scholar

[21] HANTZSCHE K, BOHLEN J, WENDT J, KAINER K U, YI S B, LETZIG D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Materialia. 63(2010)725−730.

DOI: 10.1016/j.scriptamat.2009.12.033

Google Scholar

[22] Z. Y. Xiao, Q. H. Huo, Z. W Fang, et al. Dynamic recrystallization behaviors of Mg-Gd-Y-Zn-Zr alloy with different morphologies and distributions of LPSO phases, Mater. Sci. Eng. A. 715(2018)389-403.

DOI: 10.1016/j.msea.2017.12.103

Google Scholar

[23] B. Li, B. G. Teng, D. G. Luo, Effect of passes on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy during multidirectional forging, Acta Metallurgica sinica-English letters.31(2018)1009-1018.

DOI: 10.1007/s40195-018-0769-6

Google Scholar