Microstructure Evolution and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloy during Compression

Article Preview

Abstract:

The compression behavior and mechanical properties of the Mg-13Gd-4Y-2Zn-0.5Zr (wt.%) alloy filled with intragranular long-period stacking ordered (LPSO) phases at different temperatures were investigated. The results showed that the higher the compression temperature, the smaller the plastic strain that the grains withstand. The grains changed from equiaxed to flat strips when compressed at 350°C, and the morphology of the grains did not change at 450°C. Due to the existence of DRX grains, compression at 450 °C didn’t cause large-angle kink, but the kink angle at 350°C was very large. DRX grains only appeared at the grain boundaries and around the intergranular LPSO phase at the beginning of compression, and only appear at the kink bands (KBs) after the lamellar LPSO phases begin to kink. DRX grains gradually increased with the KBs increasing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

278-285

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhou X J (Zhou, Xiaojie), Liu C M (Liu, Chuming), Gao, Y H (Gao, Yonghao), Jiang, S N (Jiang, Shunong), Liu, W H (Liu, Wenhui), Lu, L W (Lu, Liwei). Hot compression behavior of the Mg-Gd-Y-Zn-Zr alloy filled with intragranular long-period stacking ordered phases[J]. JOURNAL OF ALLOYS AND COMPOUNDS.2017:528-536.

DOI: 10.1016/j.jallcom.2017.07.088

Google Scholar

[2] Yu, H., et al, Die angle dependency of microstructural inhomogeneity in an indirect-extruded AZ31 magnesium alloy (Article) [J].Journal of Materials Processing Technology.2015:181-188.

DOI: 10.1016/j.jmatprotec.2015.05.003

Google Scholar

[3] Zhang Li, Zhang Jinghuai, Leng Zhe. Microstructure and mechanical properties of high-performance Mg-Y-Er-Zn extruded alloy [J]. MATERIALS & DESIGN.2014:256-263.

DOI: 10.1016/j.matdes.2013.08.048

Google Scholar

[4] Chen Z B (Chen, Zu-Bin), Liu, C M (Liu, Chu-Ming), Xiao, H C (Xiao, Hong-Chao), Wang J K (Wang, Jun-Kai), Chen Z Y (Chen, Zhi-Yong), Jiang S N (Jiang, Shu-Nong) 2; Z J (Su, Zai-Jun). Effect of rolling passes on the microstructures and mechanical properties of Mg–Gd–Y–Zr alloy sheets[J]. Materials Science and Engineering: A.2014:232-237.

DOI: 10.1016/j.msea.2014.09.018

Google Scholar

[5] Homma T., Kunito N., Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion[J]. Scripta Materialia.2009,Vol.61(No.6):644-647.

DOI: 10.1016/j.scriptamat.2009.06.003

Google Scholar

[6] Xu, C.a,b; Zheng, M.a;Xu, S.b; Wu, K.a; Wang, E.a; Fan, G.a; Kamado, S.b.Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing(Article)[J]. Materials Science and Engineering A.2015:137-141.

DOI: 10.1016/j.msea.2015.07.032

Google Scholar

[7] Xu, C.a,b;Zheng, M.Y.a;Xu, S.W.b;Wu, K.a;Wang, E.D.a;Kamado, S.b;Wang, G.J.c;Lv, X.Y.c.Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing(Article)[J].Materials Science and Engineering A.2012:93-98.

DOI: 10.1016/j.msea.2012.03.087

Google Scholar

[8] Garces, G.1( ggarces@cenim.csic.es);Morris, D.G.1;Mu?oz-Morris, M.A.1;Perez, P.1;Tolnai, D.2;Mendis, C.2;Stark, A.2;Lim, H.K.3;Kim, S.3;Shell, N.4;Adeva, P.1.Plasticity analysis by synchrotron radiation in a Mg97Y2Zn1 alloy with bimodal grain structure and containing LPSO phase.[J].Acta Materialia.2015:78-86.

DOI: 10.1016/j.actamat.2015.04.048

Google Scholar

[9] Li, YX (Li, Y. X.)1; Zhu, GZ (Zhu, G. -z.)1;Qiu, D (Qiu, D.)2;Yin, DD (Yin, D. D.)3;Rong, YH (Rong, Y. H.)1;Zhang, MX (Zhang, M. -X.)4.The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys[J].Journal of Alloys and Compounds.2016:252-257.

DOI: 10.1016/j.jallcom.2015.11.098

Google Scholar

[10] Hagihara, K.1( hagihara@mat.eng.osaka-u.ac.jp);Kinoshita, A.1;Sugino, Y.1;Yamasaki, M.2;Kawamura, Y.2;Yasuda, H.Y.1;Umakoshi, Y.3.Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composed of long-period stacking ordered phase.[J]. Intermetallics.2010, Vol.18(No.5): 1079-1085.

DOI: 10.1016/j.intermet.2010.02.011

Google Scholar

[11] T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Long period stacking structures observed in Mg97Zn1Y2 alloy, Scr. Mater. 51 (2004):107-111.

DOI: 10.1016/j.scriptamat.2004.04.003

Google Scholar

[12] Garces, G.1 (ggarces@cenim.csic.es); Morris, D.G.1;Mu?oz-Morris, M.A.1;Perez, P.1;Tolnai, D.2;Mendis, C.2;Stark, A.2;Lim, H.K.3;Kim, S.3;Shell, N.4;Adeva, P.1.Plasticity analysis by synchrotron radiation in a Mg97Y2Zn1 alloy with bimodal grain structure and containing LPSO phase.[J]. Acta Materialia.2015:78-86.

DOI: 10.1016/j.actamat.2015.04.048

Google Scholar

[13] Zhou, XJ (Zhou, Xiao-jie)1;Liu, CM (Liu, Chu-ming)1,2;Gao, YH (Gao, Yong-hao)1;Jiang, SN (Jiang, Shu-nong)3;Han, XZ (Han, Xiu-zhu)4;Chen, ZY (Chen, Zhi-yong)1.Evolution of LPSO Phases and Their Effect on Dynamic Recrystallization in a Mg-Gd-Y-Zn-Zr Alloy[J].METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE.2017,Vol.48A(No.6):3060-3072.

DOI: 10.1007/s11661-017-4081-2

Google Scholar

[14] Huan Liu1; Jia Ju2; Xiaowei Yang1; Jingli Yan3; Dan Song1; Jinghua Jiang1; Aibin Ma1.A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg97Y2Zn1 alloy[J].Journal of Alloys and Compounds.2017:509-517.

DOI: 10.1016/j.jallcom.2017.02.107

Google Scholar

[15] G.-Z. Quan, T.-W. Ku, W.-J. Song, B.-S. Kang, The workability evaluation of wrought AZ80 magnesium alloy in hot compression, Mater. Des. 32 (2011) :2462-2468.

DOI: 10.1016/j.matdes.2010.11.025

Google Scholar

[16] Yasumasa Chino; Takamichi Ueda; Yuki Otomatsu; Kensuke Sassa; Xinsheng Huang; Kazutaka Suzuki; Mamoru Mabuchi. Effects of Ca on Tensile Properties and Stretch Formability at Room Temperature in Mg-Zn and Mg-Al Alloys[J].MATERIALS TRANSACTIONS.2011, Vol.52(No.7):1477-1482.

DOI: 10.2320/matertrans.m2011048

Google Scholar

[17] Xuyue Yang; Hiromi Miura; Taku Sakai. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation [J].MATERIALS TRANSACTIONS.2003, Vol.44(NO.1):197-203.

DOI: 10.2320/matertrans.44.197

Google Scholar

[18] Huo, Q.a,b;Yang, X.a,b;Ma, J.a,b;Sun, H.a,b;Qin, J.a,b;Jiang, Y.a,b.Microstructural and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending(Article)[J].Materials Characterization.2013:43-51.

DOI: 10.1016/j.matchar.2013.03.001

Google Scholar

[19] Wang, L.1 (leyun.wang@hzg.de); Sabisch, J.1,2; Lilleodden, E.T.1.Kink formation and concomitant twin nucleation in Mg–Y[J]. Scripta Materialia.2016:68-71.

DOI: 10.1016/j.scriptamat.2015.08.016

Google Scholar

[20] B. B. Dong, Z. M. Zhang *, J. M. Yu, X. Che, M. Meng, J. L. Zhang, Microstructure, texture evolution and mechanical properties of multidirectional forged Mg-13Gd-4Ye2Zn-0.5Zr alloy under decreasing temperature, Journal of Alloys Compounds. 823(2020)153776.

DOI: 10.1016/j.jallcom.2020.153776

Google Scholar

[21] E. Oñorbe, G. Garcés, P. Pérez. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X –Zn X alloys[J]. Journal of Materials Science, (2011).

DOI: 10.1007/s10853-011-5899-4

Google Scholar

[22] Yamasaki M, Hashimoto K, Hagihara K, et al. Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy[J]. Acta Materialia, 2011, 59(9):3646-3658.

DOI: 10.1016/j.actamat.2011.02.038

Google Scholar

[23] Jin-Kyung Kim, Stefanie Sandlöbes, Dierk Raabe. On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking-ordered structures[J]. Acta Materialia, 2015, 82:414-423.

DOI: 10.1016/j.actamat.2014.09.036

Google Scholar