Effect of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting

Article Preview

Abstract:

The effects of the heat treatment process parameters on the microstructure and mechanical properties of a selective laser melted (SLMed) AlSi10Mg alloy were systematically investigated. The SLMed AlSi10Mg alloy was treated with T1 (180°C× 4h + air cooling) process, which had the microstructure of fine α-Al grains, fine Si phase, and nano-sized precipitations. The microhardness significantly increased to 150 HV, which is even higher than as-SLMed one (126 HV). The microhardness of SLMed AlSi10Mg alloy treated with T4 (540°C × 2h + water cooling) heat-treatment process significantly decreased to 62 HV due to the growth of α-Al grains, Si phase and the formation of β-AlFeSi phase. However, the microhardness and ultimate tensile strength of AlSi10Mg alloy treated with T6 (540°C × 2 h water cool + 180°C × 4 h air cool) process decreased to 91 HV, although the strengthening precipitation of Mg2Si phase formed. It indicates that the Mg2Si phase cannot compensate for the adverse effect of grain growth. It may provide the best potential heat treatment method for fabricating the high strength SLMed AlSi10Mg alloy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

312-317

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Kim, W. Woo, H. Wang, J.H. An, KS.H. Choi, Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction, J. Alloy. Compd. 686 (2016) 281-286.

DOI: 10.1016/j.jallcom.2016.06.011

Google Scholar

[2] H. Rao, S. Giet, K. Yang, X. Wu, C.H.J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Mater. Design. 109 (2016) 334-346.

DOI: 10.1016/j.matdes.2016.07.009

Google Scholar

[3] H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Direct metal deposition of TiB 2/AlSi10Mg composites using satellited powders, Mater. Lett. 214 (2017) 123-126.

DOI: 10.1016/j.matlet.2017.11.121

Google Scholar

[4] I. Rosenthal, R. Shneck, A. Stern. Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process, Mat. Sci. Eng. A. 729 (2018) 310-322.

DOI: 10.1016/j.msea.2018.05.074

Google Scholar

[5] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. M. Everitt. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Mat. Sci. Eng. A. 667 (2016) 139-146.

DOI: 10.1016/j.msea.2016.04.092

Google Scholar

[6] P.Y. Dong, Y.D. Li, M. Li, S.J. Yang, J.M. Li. Effect of T6 heat treatment on the interfacial microstructure and mechanical properties of A356/6082 aluminum alloy composite plate, Materials China. 2 (2019) 177-182.

Google Scholar

[7] F. Liu, F. Yu, D. Zhao, Z. Liang. Microstructure and mechanical properties of an Al–12.7Si–0.7Mg alloy processed by extrusion and heat treatment, Mat. Sci. Eng. A. 528 (2011) 3786-3790.

DOI: 10.1016/j.msea.2011.01.041

Google Scholar

[8] L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan, L.J. Guo. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment, Mat. Sci. Eng. A. 734 (2018) 299-310.

DOI: 10.1016/j.msea.2018.07.103

Google Scholar

[9] L. Zhou, Abhishek Mehtab, Esin Schulz, McWilliams, Brandon, Cho, Kyu, Sohn, Yongho. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment, Mater. Charact. 143 (2018) 5-17.

DOI: 10.1016/j.matchar.2018.04.022

Google Scholar

[10] N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mat. Sci. Eng. A. 704 (2017) 218-228.

DOI: 10.1016/j.msea.2017.08.029

Google Scholar

[11] X. Y. Wu, H. R. Zhang, F. X. Zhang, Z. Ma, L. N. Jia, B. Yang, T. X. Tao, H. Zhang. Effect of cooling rate and Co content on the formation of Fe-rich intermetallics in hypoeutectic Al7Si0.3Mg alloy with 0.5%Fe, Mater. Charact. 139 (2018) 116-124.

DOI: 10.1016/j.matchar.2018.02.029

Google Scholar

[12] Q. Tang, J. Zhao, T. Wang, J. Chen, K. He. The effects of neodymium addition on the intermetallic microstructure and mechanical properties of Al-7Si-0.3Mg-0.3Fe alloys, J. Alloy. Compd. 741 (2018) 161-173.

DOI: 10.1016/j.jallcom.2018.01.138

Google Scholar

[13] S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller. In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography, Acta. Mater. 58 (2010) 5370-5380.

DOI: 10.1016/j.actamat.2010.06.012

Google Scholar

[14] D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani. The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions, Mat. Sci. Eng. A. 610 (2014) 414-426.

DOI: 10.1016/j.msea.2014.05.059

Google Scholar