[1]
D.K. Kim, W. Woo, H. Wang, J.H. An, KS.H. Choi, Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction, J. Alloy. Compd. 686 (2016) 281-286.
DOI: 10.1016/j.jallcom.2016.06.011
Google Scholar
[2]
H. Rao, S. Giet, K. Yang, X. Wu, C.H.J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Mater. Design. 109 (2016) 334-346.
DOI: 10.1016/j.matdes.2016.07.009
Google Scholar
[3]
H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Direct metal deposition of TiB 2/AlSi10Mg composites using satellited powders, Mater. Lett. 214 (2017) 123-126.
DOI: 10.1016/j.matlet.2017.11.121
Google Scholar
[4]
I. Rosenthal, R. Shneck, A. Stern. Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process, Mat. Sci. Eng. A. 729 (2018) 310-322.
DOI: 10.1016/j.msea.2018.05.074
Google Scholar
[5]
N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. M. Everitt. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment, Mat. Sci. Eng. A. 667 (2016) 139-146.
DOI: 10.1016/j.msea.2016.04.092
Google Scholar
[6]
P.Y. Dong, Y.D. Li, M. Li, S.J. Yang, J.M. Li. Effect of T6 heat treatment on the interfacial microstructure and mechanical properties of A356/6082 aluminum alloy composite plate, Materials China. 2 (2019) 177-182.
Google Scholar
[7]
F. Liu, F. Yu, D. Zhao, Z. Liang. Microstructure and mechanical properties of an Al–12.7Si–0.7Mg alloy processed by extrusion and heat treatment, Mat. Sci. Eng. A. 528 (2011) 3786-3790.
DOI: 10.1016/j.msea.2011.01.041
Google Scholar
[8]
L.F. Wang, J. Sun, X.L. Yu, Y. Shi, X.G. Zhu, L.Y. Cheng, H.H. Liang, B. Yan, L.J. Guo. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment, Mat. Sci. Eng. A. 734 (2018) 299-310.
DOI: 10.1016/j.msea.2018.07.103
Google Scholar
[9]
L. Zhou, Abhishek Mehtab, Esin Schulz, McWilliams, Brandon, Cho, Kyu, Sohn, Yongho. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment, Mater. Charact. 143 (2018) 5-17.
DOI: 10.1016/j.matchar.2018.04.022
Google Scholar
[10]
N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mat. Sci. Eng. A. 704 (2017) 218-228.
DOI: 10.1016/j.msea.2017.08.029
Google Scholar
[11]
X. Y. Wu, H. R. Zhang, F. X. Zhang, Z. Ma, L. N. Jia, B. Yang, T. X. Tao, H. Zhang. Effect of cooling rate and Co content on the formation of Fe-rich intermetallics in hypoeutectic Al7Si0.3Mg alloy with 0.5%Fe, Mater. Charact. 139 (2018) 116-124.
DOI: 10.1016/j.matchar.2018.02.029
Google Scholar
[12]
Q. Tang, J. Zhao, T. Wang, J. Chen, K. He. The effects of neodymium addition on the intermetallic microstructure and mechanical properties of Al-7Si-0.3Mg-0.3Fe alloys, J. Alloy. Compd. 741 (2018) 161-173.
DOI: 10.1016/j.jallcom.2018.01.138
Google Scholar
[13]
S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller. In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography, Acta. Mater. 58 (2010) 5370-5380.
DOI: 10.1016/j.actamat.2010.06.012
Google Scholar
[14]
D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani. The effect of Ni and V trace elements on the mechanical properties of A356 aluminium foundry alloy in as-cast and T6 heat treated conditions, Mat. Sci. Eng. A. 610 (2014) 414-426.
DOI: 10.1016/j.msea.2014.05.059
Google Scholar