Microstructures and Mechanical Properties of Annealed Fe-8Mn-6Al-0.4C Duplex Low-Density Steels

Article Preview

Abstract:

The cold-rolled Fe-8Mn-6Al-0.4C duplex low-density steel was annealed at different conditions to obtain ferrite + austenite duplex microstructure. The excellent mechanical properties (i.e., elongation of 52%, tensile strength of 785 MPa, and a product of tensile strength and elongation of 40.9 GPa·%) have been obtained by adjusting the volume fraction and the stability of austenite. The microstructure of the experimental steels was analyzed by scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD), and the volume fraction of austenite was estimated by the X-ray diffraction (XRD). The results show that the distribution of austenite grain size is inhomogeneous, and that the mechanical stability of austenite is mainly affected by the alloying partitioning and the variation of grain size during the annealing process. The increase of elongation is attributed to the degradation in mechanical stability of austenite, which can efficiently promote an occurrence of transformation induced plasticity (TRIP) effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

337-343

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chen, R. Rana, A. Haldar, R.K. Ray, Current state of Fe-Mn-Al-C low density steels, Progress in Materials Science, 89 (2017) 345-391.

DOI: 10.1016/j.pmatsci.2017.05.002

Google Scholar

[2] I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. Massardier-Jourdan, S. Cazottes, X. Kleber, Low-Density Steels: Complex Metallurgy for Automotive Applications, JOM-US, 66 (2014) 1747-1758.

DOI: 10.1007/s11837-014-1084-y

Google Scholar

[3] O.A. Zambrano, A general perspective of Fe-Mn-Al-C steels, J MATER SCI, 53 (2018) 14003-14062.

DOI: 10.1007/s10853-018-2551-6

Google Scholar

[4] L. Zhang, R. Song, C. Zhao, F. Yang, Y. Xu, S. Peng, Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel, Materials Science and Engineering A, 643 (2015) 183-193.

DOI: 10.1016/j.msea.2015.07.043

Google Scholar

[5] X. Li, R. Song, N. Zhou, J. Li, L. Li. Effects of Solution Temperature on Microstructure and Properties of Fe-Mn-Al-C Ferrite-Based Steel. In: Y. Han (Ed), Lecture Notes in Mechanical Engineering, 2018, 495-503.

DOI: 10.1007/978-981-13-0107-0_48

Google Scholar

[6] C. Seo, K.H. Kwon, K. Choi, K. Kim, J.H. Kwak, S. Lee, N.J. Kim, Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel, Scripta Materialia, 66 (2012) 519-522.

DOI: 10.1016/j.scriptamat.2011.12.026

Google Scholar

[7] J. Kang, Y.J. Li, X.H. Wang, H.S. Wang, G. Yuan, R.D.K. Misra, G.D. Wang, Design of a low density Fe-Mn-Al-C steel with high strength-high ductility combination involving TRIP effect and dynamic carbon partitioning, Materials Science and Engineering: A, 742 (2019) 464-477.

DOI: 10.1016/j.msea.2018.11.044

Google Scholar

[8] Z. Li, Y. Mou, X. Li, D. Misra, H. Ding, L. He, H. Li, The Significance of Microstructure Evolution on Governing Impact Toughness of Fe-0.2C-8.5Mn-3Al Medium-Mn TRIP Steel Studied by a Novel Heat Treatment, STEEL RES INT, (2020) 2000029.

DOI: 10.1002/srin.202000029

Google Scholar

[9] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Materialia, 56 (2007) 421-424.

DOI: 10.1016/j.scriptamat.2006.10.041

Google Scholar

[10] S.S. Sohn, K. Choi, J. Kwak, N.J. Kim, S. Lee, Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms, Acta Materialia, 78 (2014) 181-189.

DOI: 10.1016/j.actamat.2014.06.059

Google Scholar

[11] J.H. Ryu, D. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D. Suh, Strain partitioning and mechanical stability of retained austenite, Scripta Materialia, 63 (2010) 297-299.

DOI: 10.1016/j.scriptamat.2010.04.020

Google Scholar

[12] S.S. Sohn, H. Song, J. Kwak, S. Lee, Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels, Scientific Reports, 7 (2017) (1927).

DOI: 10.1038/s41598-017-02183-4

Google Scholar

[13] Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, F.R. Cao, Microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel, Materials Science and Engineering: A, 584 (2013) 150-155.

DOI: 10.1016/j.msea.2013.07.023

Google Scholar

[14] S.S. Sohn, H. Song, B. Suh, J. Kwak, B. Lee, N.J. Kim, S. Lee, Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization, Acta Materialia, 96 (2015) 301-310.

DOI: 10.1016/j.actamat.2015.06.024

Google Scholar

[15] S. Kim, H. Kim, N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility, Nature, 518(2015) 77-79.

DOI: 10.1038/nature14144

Google Scholar

[16] J. H. Hwang, T. T. T. Trang, O. Lee, G. Park, A. Zargaran, N. J. Kim, Improvement of strength- ductility balance of B2-strengthened lightweight steel, Acta Materialia, 191 (2020) 1-12.

DOI: 10.1016/j.actamat.2020.03.022

Google Scholar

[17] N. Zhou, R. Song, F. Yang, X. Li, J. Li, Influence of Annealing Temperature on Microstructure and Three-Stage Strain Hardening Behavior in Cold-Rolled Fe-Mn-Al-C Steel, JOM-US, 71 (2019) 4105-4113.

DOI: 10.1007/s11837-019-03675-6

Google Scholar

[18] E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Materialia, 56 (2007) 421-424.

DOI: 10.1016/j.scriptamat.2006.10.041

Google Scholar