[1]
M. B. Feng, Development and application of new materials in automotive light weighting technologies, J. Automotive Engineering. 28 (2006) 213-220.
Google Scholar
[2]
H. L. Yi, L. Sun, X. C. Xiong, Challenges in the formability of the next generation of automotive steel sheets, J. Materials Science and Technology, 34 (2018) 1112-1117.
DOI: 10.1080/02670836.2018.1424383
Google Scholar
[3]
S. Chatterjee, M. Murugananth, H. K. D. H. Bhadeshia, δ-TRIP steel, J. Materials Science and Technology. 23 (2013) 819-827.
DOI: 10.1179/174328407x179746
Google Scholar
[4]
H. L. Yi, Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress, J. Jom, 66 (2014) 1759-1769.
DOI: 10.1007/s11837-014-1089-6
Google Scholar
[5]
H. L. Yi, δ-TRIP Steel, D. Pohang University of Science and Technology,Pohang, (2010).
Google Scholar
[6]
D. W. Suh, N. J. Kim. Low-density steel[J]. Scripta Mater, (2013).
Google Scholar
[7]
H. L. Yi, P Chen, G. D. Wang, M. T. Ma, δ-TRIP steel: Physical and mechanical metallurgy, J. Engineering Ences. 16 (2014) 18-30.
Google Scholar
[8]
H. L. Yi, K. Y. Lee, H. K. D. H. Bhadeshia, Stabilisation of ferrite in hot rolled δ-TRIP steel, J. Materials Science and Technology, 27 (2013) 525-529.
DOI: 10.1179/026708309x12506934374001
Google Scholar
[9]
K. M. Qi, H. Ding, Material forming technology, First ed., Metallurgical Industry Press, Bei Jing, (2006).
Google Scholar
[10]
H. R. Abedi, A. Z. Hanzaki, Z. Liu, R. Xin, N. Haghdadi, P.D. Hodgson, Continuous dynamic re-crystallization in low density steel, J. Mater. Des. 114 (2017) 55–64.
DOI: 10.1016/j.matdes.2016.10.044
Google Scholar
[11]
J. J.Jonas, C. M. Sellars,W. J. McG. Tegart, Strength and structure under hot-working conditions, J. Metall Rev. 14 (1969) 1-24.
DOI: 10.1179/mtlr.1969.14.1.1
Google Scholar
[12]
S. l. Sun, M. G. Zhang, W. W. He,Thermal deformation behavior and texture of 9Cr-2W heat resistant alloy, J. Rare Metal Materials and Engineering, 39 (2010) 1993-1996.
Google Scholar
[13]
D. J. Li, Q. Bai, S. Y. Song, Q. Liu, G. Wu, N. Lv, Hot deformation behavior and thermal processing maps of high-Mn Fe-20Mn-3Si-3Al TRIP steel, C. The eleventh National Congress of Heat Treatment, China: Shanxi, Taiyuan, 5 (2015) 1140-1144.
Google Scholar
[14]
C. M. Sellars,W. J. Mctegart, On the mechanism of hot deformation, J. Acta Metallurgica, 14 (1966) 1136-1138.
DOI: 10.1016/0001-6160(66)90207-0
Google Scholar
[15]
L. Duprez, B. C. De Cooman, N. Akdut, Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation, J. Metallurgical Materials Transactions A, 33 (2002) 1931-1938.
DOI: 10.1007/s11661-002-0026-4
Google Scholar
[16]
C. Zener, J. H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Journal of Applied Physics, 15 (1944) 22-32.
DOI: 10.1063/1.1707363
Google Scholar
[17]
Z. S. Wei, Hot deformation behavior and hot processing map of 20CrNi2Mo low carbon steel at elevated temperature, J. Transactions of Material and Heat Treatment, 38 (2017) 159-167.
Google Scholar