[1]
Cai Z.H, Ding H, Misra R.D.K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Mater. 84 (2015) 229-236.
DOI: 10.1016/j.actamat.2014.10.052
Google Scholar
[2]
Suh D.W, Kim S.J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Mater. 126 (2017) 63-67.
DOI: 10.1016/j.scriptamat.2016.07.013
Google Scholar
[3]
Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels[J]. Acta Mater. 139 (2017) 39-50.
DOI: 10.1016/j.actamat.2017.07.056
Google Scholar
[4]
Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Mater. 63 (2010) 815-818.
DOI: 10.1016/j.scriptamat.2010.06.023
Google Scholar
[5]
S.-J. Park, B. Hwang, K.H. Lee, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum[J]. Scripta Mater. 68 (2013) 365-369.
DOI: 10.1016/j.scriptamat.2012.09.030
Google Scholar
[6]
Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties 0.35 C–3.5 Mn–5.8 Al lightweight steel[J]. Acta Mater. 61 (2013) 5050-5066.
DOI: 10.1016/j.actamat.2013.04.038
Google Scholar
[7]
Cai Z H, Ding H, Misra R D K, et al. Mechanistic contribution of the interplay between microstructure and plastic deformation in hot-rolled Fe–11Mn–2/4Al–0.2C steel[J]. Mater. Sci. Eng. A, 652 (2016) 205-211.
DOI: 10.1016/j.msea.2015.11.084
Google Scholar
[8]
Zhou N, Song R, Li X, et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel[J]. Mater. Sci. Eng. A 738 (2018). 153-162.
DOI: 10.1016/j.msea.2018.09.098
Google Scholar
[9]
Li J, Song R, Li X, et al. Microstructural Evolution and Tensile Properties of 70GPa·% Grade Strong and Ductile Hot-rolled 6Mn Steel Treated by Intercritical Annealing[J]. Mater. Sci. Eng. A 745 (2019) 212-220.
DOI: 10.1016/j.msea.2018.12.110
Google Scholar
[10]
Li Z.C, Ding H, et al. Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel[J]. Mater. Sci. Eng. A 639 (2015) 559-566.
DOI: 10.1016/j.msea.2015.05.061
Google Scholar
[11]
Li X, Song R, Zhou N, et al. Microstructure and tensile behavior of Fe-8Mn-6Al-0.2C low density steel[J]. Mater. Sci. Eng. A. 709 (2017) 97-104.
DOI: 10.1016/j.msea.2017.10.039
Google Scholar
[12]
Zhang S, Findley K O. Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels[J]. Acta Mater. 61 (2013) 1895-1903.
DOI: 10.1016/j.actamat.2012.12.010
Google Scholar
[13]
Kim J K, Kim J H, Suh D W. Partially-recrystallized ferrite grains and multiple plasticity enhancing mechanisms in a medium Mn steel[J]. Mater. Charact 155 (2019) 109812.
DOI: 10.1016/j.matchar.2019.109812
Google Scholar
[14]
Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching–partitioning–tempering process[J]. Mater. Sci. Eng. A. 528 (2011) 8006-8012.
DOI: 10.1016/j.msea.2011.07.008
Google Scholar