[1]
J. Yang, F. Cui, Q. Yin, et al., Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant, IEEE T. Plasma Sci. 37 (2009) 1161-1168.
DOI: 10.1109/tps.2009.2016664
Google Scholar
[2]
G. Ghimir, J.R. Spiro, R.K. Kharbanda, et al., Evidence for the return of coronary vasoreactivity following absorption of a bioabsorbable magnesium alloy coronary stent, Am. J. Cardiol. 4 (2007) 481-484.
DOI: 10.4244/jv4i4a82
Google Scholar
[3]
X. Ai, G. Quan, Z. Liu, et al., Microstructure and tensile properties of thixo-diecast AZ91D magnesium alloy, China Foundry. 10 (2013) 288-293.
Google Scholar
[4]
K. Zhou, H. Wang, W. Liang, et al., Microstructure and mechanical properties of cast Mg-15Al-xNd alloy by Permanent mold, China Foundry. 10 (2013) 315-320.
Google Scholar
[5]
M.P. Staiger, A.M. Pietaka, J. Huadmaia, et al., Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials. 27 (2006) 1728-1734.
DOI: 10.1016/j.biomaterials.2005.10.003
Google Scholar
[6]
W. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R Rep. 44 (2004) 45-89.
Google Scholar
[7]
J.R. Scully, A. Gebert, J.H. Payer, Corrosion and related mechanical properties of bulk metallic glasses, J. Mater. Res. 22 (2007) 302-313.
DOI: 10.1557/jmr.2007.0051
Google Scholar
[8]
A. Gebert, U. Wolff, A. John, et al., Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes, Mat. Sci. Eng. A. 299 (2001) 125–135.
DOI: 10.1016/s0921-5093(00)01401-5
Google Scholar
[9]
S. Zhang, X. Zhang, C. Zhao, et al., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater. 6 (2010) 626-640.
Google Scholar
[10]
Y. Wan, G. Xiong, H. Luo, et al., Preparation and characterization of a new biomedical magnesium-calcium alloy, Mater. Design. 29 (2008) 2034-2037.
DOI: 10.1016/j.matdes.2008.04.017
Google Scholar
[11]
W.D. Mueller, M.L. Nascimento, Monica Fernández Lorenzo de Mele. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater. 6 (2010) 1749-1755.
DOI: 10.1016/j.actbio.2009.12.048
Google Scholar
[12]
Y. Sun, B. Zhang, Y. Wang, et al., Preparation and characterization of a new biomedical Mg-Zn-Ca alloy, Mater. Design. 34 (2012) 58-64.
DOI: 10.1016/j.matdes.2011.07.058
Google Scholar
[13]
M.B. Kannan, R.K. Raman. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomater. 29 (2008) 2306-2314.
DOI: 10.1016/j.biomaterials.2008.02.003
Google Scholar
[14]
Z. Li, X. Gu, S. Lou, et al., The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomater. 29 (2008) 1329-1344.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[15]
X. Gu, Y. Zheng, S. Zhong, et al., Corrosion of, and cellular responses of Mg-Zn-Ca bulk metallic glasses, Biomater. 31 (2010) 1093–1103.
DOI: 10.1016/j.biomaterials.2009.11.015
Google Scholar
[16]
B. Zhang, Y. Hou, X. Wang, et al., Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions, Mat. Sci. Eng. C. 31 (2011) 1667-1673.
DOI: 10.1016/j.msec.2011.07.015
Google Scholar
[17]
F. Feyerabend, J. Fischer, J. Holtz, et al., Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta Biomater. 6 (2010) 1834–1842.
DOI: 10.1016/j.actbio.2009.09.024
Google Scholar
[18]
X. Zhang, G. Yuan, J. Niu, et al., Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios, J. Mech. Behav. Biomed. 9 (2012) 153-162.
DOI: 10.1016/j.jmbbm.2012.02.002
Google Scholar
[19]
W. Zhu, S. Xu, P. Shao, et al., Study on Biological Effects of Rare Earth in the Southern Jiangxi Area — Daily Allowable Intake of Rare Earth, Chin. Environ. Sci. 17 (1997) 63-66. (in Chinese).
Google Scholar
[20]
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[21]
D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969) 473-488.
Google Scholar
[22]
Z. Lu, H. Tan, S.C. Ng, et al., The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Mater. 42 (2000) 667-673.
DOI: 10.1016/s1359-6462(99)00417-0
Google Scholar
[23]
A. Inoue, High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (Overview), Mater. Trans. 36 (1995) 866-875.
DOI: 10.2320/matertrans1989.36.866
Google Scholar
[24]
M. Jafarian, F. Gobal, I. Danaee, et al., Electrochemical studies of the pitting corrosion of tin in citric acid solution containing Cl−, Electrochim. Acta, 53 (2008) 4528-4536.
DOI: 10.1016/j.electacta.2008.01.051
Google Scholar
[25]
F. Qin, C. Ji, Z. Dan, et al., Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering, Acta Metall. Sin-Engl. 29 (2016) 793-799.
DOI: 10.1007/s40195-016-0451-9
Google Scholar
[26]
E.E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, ASM international, Netherlands, (2000).
Google Scholar
[27]
Y. Lü, Z. Zhang, Y. Lai, et al., Preparation and characterization of electrode posited porous Mg(OH)2 thin films at room temperature, Chin. J. Nonferrous Met. 23 (2013) 1086-1091.
Google Scholar
[28]
F. Qin, G. Xie, Z. Dan, et al., Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys, Intermetallics. 42 (2013) 9-13.
DOI: 10.1016/j.intermet.2013.04.021
Google Scholar