Effect of RE Elements Addition on Corrosion Behavior of Mg-Zn-Ca Amorphous Alloys for Biomedical Applications

Article Preview

Abstract:

The effects of rare earth (RE) elements (La, Y) addition on thermal stability and corrosion behavior of Mg68Zn28Ca4 amorphous alloys were investigated in this paper. The investigated Mg-Zn-Ca-RE amorphous alloys exhibit good thermal stability and enhanced corrosion resistance. The enhanced corrosion resistance of the RE-containing amorphous alloys is owing to the enrichment of the Zn and RE elements in the oxide layer. The corrosion resistance is further improved with the increasing of RE content.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

501-510

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yang, F. Cui, Q. Yin, et al., Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant, IEEE T. Plasma Sci. 37 (2009) 1161-1168.

DOI: 10.1109/tps.2009.2016664

Google Scholar

[2] G. Ghimir, J.R. Spiro, R.K. Kharbanda, et al., Evidence for the return of coronary vasoreactivity following absorption of a bioabsorbable magnesium alloy coronary stent, Am. J. Cardiol. 4 (2007) 481-484.

DOI: 10.4244/jv4i4a82

Google Scholar

[3] X. Ai, G. Quan, Z. Liu, et al., Microstructure and tensile properties of thixo-diecast AZ91D magnesium alloy, China Foundry. 10 (2013) 288-293.

Google Scholar

[4] K. Zhou, H. Wang, W. Liang, et al., Microstructure and mechanical properties of cast Mg-15Al-xNd alloy by Permanent mold, China Foundry. 10 (2013) 315-320.

Google Scholar

[5] M.P. Staiger, A.M. Pietaka, J. Huadmaia, et al., Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials. 27 (2006) 1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[6] W. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R Rep. 44 (2004) 45-89.

Google Scholar

[7] J.R. Scully, A. Gebert, J.H. Payer, Corrosion and related mechanical properties of bulk metallic glasses, J. Mater. Res. 22 (2007) 302-313.

DOI: 10.1557/jmr.2007.0051

Google Scholar

[8] A. Gebert, U. Wolff, A. John, et al., Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes, Mat. Sci. Eng. A. 299 (2001) 125–135.

DOI: 10.1016/s0921-5093(00)01401-5

Google Scholar

[9] S. Zhang, X. Zhang, C. Zhao, et al., Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomater. 6 (2010) 626-640.

Google Scholar

[10] Y. Wan, G. Xiong, H. Luo, et al., Preparation and characterization of a new biomedical magnesium-calcium alloy, Mater. Design. 29 (2008) 2034-2037.

DOI: 10.1016/j.matdes.2008.04.017

Google Scholar

[11] W.D. Mueller, M.L. Nascimento, Monica Fernández Lorenzo de Mele. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater. 6 (2010) 1749-1755.

DOI: 10.1016/j.actbio.2009.12.048

Google Scholar

[12] Y. Sun, B. Zhang, Y. Wang, et al., Preparation and characterization of a new biomedical Mg-Zn-Ca alloy, Mater. Design. 34 (2012) 58-64.

DOI: 10.1016/j.matdes.2011.07.058

Google Scholar

[13] M.B. Kannan, R.K. Raman. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomater. 29 (2008) 2306-2314.

DOI: 10.1016/j.biomaterials.2008.02.003

Google Scholar

[14] Z. Li, X. Gu, S. Lou, et al., The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomater. 29 (2008) 1329-1344.

DOI: 10.1016/j.biomaterials.2007.12.021

Google Scholar

[15] X. Gu, Y. Zheng, S. Zhong, et al., Corrosion of, and cellular responses of Mg-Zn-Ca bulk metallic glasses, Biomater. 31 (2010) 1093–1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[16] B. Zhang, Y. Hou, X. Wang, et al., Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions, Mat. Sci. Eng. C. 31 (2011) 1667-1673.

DOI: 10.1016/j.msec.2011.07.015

Google Scholar

[17] F. Feyerabend, J. Fischer, J. Holtz, et al., Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines, Acta Biomater. 6 (2010) 1834–1842.

DOI: 10.1016/j.actbio.2009.09.024

Google Scholar

[18] X. Zhang, G. Yuan, J. Niu, et al., Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios, J. Mech. Behav. Biomed. 9 (2012) 153-162.

DOI: 10.1016/j.jmbbm.2012.02.002

Google Scholar

[19] W. Zhu, S. Xu, P. Shao, et al., Study on Biological Effects of Rare Earth in the Southern Jiangxi Area — Daily Allowable Intake of Rare Earth, Chin. Environ. Sci. 17 (1997) 63-66. (in Chinese).

Google Scholar

[20] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[21] D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969) 473-488.

Google Scholar

[22] Z. Lu, H. Tan, S.C. Ng, et al., The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, Scripta Mater. 42 (2000) 667-673.

DOI: 10.1016/s1359-6462(99)00417-0

Google Scholar

[23] A. Inoue, High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (Overview), Mater. Trans. 36 (1995) 866-875.

DOI: 10.2320/matertrans1989.36.866

Google Scholar

[24] M. Jafarian, F. Gobal, I. Danaee, et al., Electrochemical studies of the pitting corrosion of tin in citric acid solution containing Cl−, Electrochim. Acta, 53 (2008) 4528-4536.

DOI: 10.1016/j.electacta.2008.01.051

Google Scholar

[25] F. Qin, C. Ji, Z. Dan, et al., Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering, Acta Metall. Sin-Engl. 29 (2016) 793-799.

DOI: 10.1007/s40195-016-0451-9

Google Scholar

[26] E.E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, ASM international, Netherlands, (2000).

Google Scholar

[27] Y. Lü, Z. Zhang, Y. Lai, et al., Preparation and characterization of electrode posited porous Mg(OH)2 thin films at room temperature, Chin. J. Nonferrous Met. 23 (2013) 1086-1091.

Google Scholar

[28] F. Qin, G. Xie, Z. Dan, et al., Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys, Intermetallics. 42 (2013) 9-13.

DOI: 10.1016/j.intermet.2013.04.021

Google Scholar