Effect of Ti and Sb Elements Addition on the Microstructure and Corrosion Resistance of Hot-Dip Galvanized Zn-11Al-3Mg Alloy

Article Preview

Abstract:

The effect of Ti and Sb elements addition on the microstructures and corrosion resistance of hot-dip galvanized Zn-11Al-3Mg alloy was investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and Electrochemical workstation, respectively. Results showed that the grain size of the alloy was obviously refined with the addition of Ti and Sb elements, due to Al3Ti phase as the nucleation substrate resulted in the transformation of Al-rich phase from dendrite to petal-like. In addition, the pitting corrosion resistance of the alloy has been significantly enhanced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

630-637

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Meng, G. Jiang, X. Ju, J. Hao, TEM study on the microstructure of the Zn-Al-Mg alloy, Materials Characterization. 129 (2017) 336-343.

DOI: 10.1016/j.matchar.2017.05.011

Google Scholar

[2] Y Morimoto, K Honda, K Nishimura, S. Tanaka, A. Takahashi, H. Shindo, M. Kurosaki, Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet 'Super Dyma,, Nippon Steel Technical Report, 87 (2003) 24-26.

DOI: 10.2355/tetsutohagane1955.89.1_161

Google Scholar

[3] S. Schürz, G.H. Luckeneder, M. Fleischanderl, P. Mack, H. Gsaller, A.C. Kneissl, G. Mori, Chemistry of corrosion products on Zn-Al-Mg alloy coated steel, Corros. Sci. 52 (2010) 3271–3279.

DOI: 10.1016/j.corsci.2010.05.044

Google Scholar

[4] J. Elvins, J.A. Spittle, J.H. Sullivan, D.A. Worsley, The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel, Corros. Sci. 50 (2008) 1650–1658.

DOI: 10.1016/j.corsci.2008.02.005

Google Scholar

[5] N. LeBozec, D. Thierry, A. Peltola, L. Luxem, G. Lukeneder, G. Marchiaro, M. Rohwerder, Corrosion performance of Zn-Mg-Al coated steel in accelerated corrosion tests used in the automotive industry and field exposures, Mater. Corros. 64 (2013) 969–978.

DOI: 10.1002/maco.201206959

Google Scholar

[6] T. Prosek, N. Larché, M. Vlot, F. Goodwin, D. Thierry, Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications, Mater. Corros. 61 (2010) 412–420.

DOI: 10.1002/maco.200905425

Google Scholar

[7] T. Prosek, A. Nazarov, A.L. Gac, D. Thierry, Coil-coated Zn–Mg and Zn–Al–Mg: Effect of climatic parameters on the corrosion at cut edges, Prog. Org. Coat. 83 (2015) 26–35.

DOI: 10.1016/j.porgcoat.2015.01.023

Google Scholar

[8] N.Y. Tang, Y.H. Liu. Discussion of Interfacial layer in coatings produced in molten Zn-Al eutectoid alloy containing Si,, Metallurgical and Materials Transactions A. 36 (2005) 2541-2544.

DOI: 10.1007/s11661-005-0127-y

Google Scholar

[9] S.K. Kairy, P.A. Rometsch, K. Diao, J.F. Nie, C.H.J. Davies, N. Birbilis, Exploring the electrochemistry of 6xxx series aluminium alloys as a function of Si to Mg ratio, Cu content, ageing conditions and microstructure, Electrochimica Acta. 190 (2016) 92–103.

DOI: 10.1016/j.electacta.2015.12.098

Google Scholar

[10] R.Y. Chen, D.J. Willis, The behavior of silicon in the solidification of Zn–55Al–1.6Si coating on steel, Metall. Mater. Trans. A 36 (2005) 117–128.

DOI: 10.1007/s11661-005-0144-x

Google Scholar

[11] N.C. Hosking, M.A. Ström, P.H. Shipway, C.D. Rudd, Corrosion resistance of zinc–magnesium coated steel, Corros. Sci. 49 (2007) 3669–3695.

DOI: 10.1016/j.corsci.2007.03.032

Google Scholar

[12] F. Garcia, A. Salinas, E. Nava, The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al–Zn coatings on steel strips, Materials Letters. 60 (2006) 775-778.

DOI: 10.1016/j.matlet.2005.10.010

Google Scholar

[13] K. Li, H. Xu, Y. Liu, C. Wu, X. Su, J. Wang, Effect of Titanium on solidification microstructure of super dyma alloy, Chin. J. Rare Met. 40 (2016) 1100-1107.

Google Scholar

[14] S. Li, B. Gao, S. Yin, G. Tu, G. Zhu, S. Sun, X. Zhu, The effects of RE and Si on the microstructure and corrosion resistance of Zn-6Al-3Mg hot dip coating, Appl. Surf. Sci. 357 (2015) 2004-2012.

DOI: 10.1016/j.apsusc.2015.09.172

Google Scholar

[15] X. Wang, J. Lu, C. Che, Identification of segregation phase on a batch hot-dip-coated Zn/0.1Al/0.2Sb surface, Surf. Interface. Anal. 39 (2007) 805-808.

DOI: 10.1002/sia.2593

Google Scholar

[16] S. Peng, S. Xie, F. Xiao, J. Lu, Corrosion behavior of spangle on a batch hot-dip galvanized Zn-0.05Al-0.2Sb coating in 3.5 wt.% NaCl solution, Corros. Sci. 163 (2020) 108237.

DOI: 10.1016/j.corsci.2019.108237

Google Scholar

[17] S. Peng. J. Lu, C. Che, G. Kong, Q. Xu, Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings, Applied Surface Science. 256 (2010) 5015-5020.

DOI: 10.1016/j.apsusc.2010.03.046

Google Scholar

[18] S. Peng, S. Xie, Y. Yang, G. Xiao, J. Lu, L. Zhang, Aluminum and antimony segregation on a batch hot-dip galvanized Zn-0.05Al-0.2Sb coating, Journal of Alloys and Compounds. 694 (2017) 1004-1010.

DOI: 10.1016/j.jallcom.2016.10.136

Google Scholar