[1]
G.L. Messing, A.J. Stevenson, Toward pore-free ceramics, Science 322 (2008) 383-384.
DOI: 10.1126/science.1160903
Google Scholar
[2]
A. Goldsterin, A. Krell, Transparent ceramic at 50: progress made and further prospects, J. Am. Ceram. Soc. 99 (2016) 3173-3197.
DOI: 10.1111/jace.14553
Google Scholar
[3]
Z. Xiao, S. Yu, Y. Li, S. Ruan, L. B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang, Materials development and potential applications of transparent ceramics: A review, Mater. Sci. Eng. R Rep. 139 (2020) 100518.
DOI: 10.1016/j.mser.2019.100518
Google Scholar
[4]
D.L. Jiang, Transparent ceramics: one of the most important field of research and development of inorganic materials, J. Inorg. Mater. 24 (2009) 873-881.
DOI: 10.3724/sp.j.1077.2009.00873
Google Scholar
[5]
Z.A. Munir, D. V. Quach, M. Ohyanagi, Electric current activation of sintering: a review of the pulsed electric current sintering process, J. Am. Ceram. Soc. 94 (2011) 1-19.
DOI: 10.1111/j.1551-2916.2010.04210.x
Google Scholar
[6]
O. Gillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (2014) 830-849.
DOI: 10.1002/adem.201300409
Google Scholar
[7]
Z.Y. Hu, Z.H. Zhang, X. W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications, Mater. Des. 191 (2020) 108662.
DOI: 10.1016/j.matdes.2020.108662
Google Scholar
[8]
L.Q. An, A. Ito, J. Zhang, D.Y. Tang, T. Goto, Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation, Opt. Mater. Express 4 (2014) 1420-1426.
DOI: 10.1364/ome.4.001420
Google Scholar
[9]
M. Jafar, S.N. Achary, N.P. Salke, A.K. Sahu, R. Rao, A.K. Tyagi, X-ray diffraction and Raman spectroscopic investigations on CaZrTi2O7-Y2Ti2O7 system: delineation of phase fields consisting of potential ceramic host materials, J. Nucl. Mater. 475 (2016) 192-199.
DOI: 10.1016/j.jnucmat.2016.04.016
Google Scholar
[10]
J.Y. Ding, Y. Xiao, Z.F. Wang, L.X. Wang, Q.T. Zhang, Effects of additives on dielectric properties of Y2Ti2O7 ceramics, J. Inorg. Mater. 26 (2011) 327-331.
Google Scholar
[11]
R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, Photocatalytic activity of R3MO7 and R2Ti2O7 (R= Y, Gd, La; M =Nb, Ta) for water splitting into H2 and O2, J. Phys. Chem. 110 (2016) 2219-2226.
DOI: 10.1002/chin.200616023
Google Scholar
[12]
J.K. Gill, O.P. Pandey, K. Singh, Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC, Solid State Sci. 13 (2011) 1960-1966.
DOI: 10.1016/j.solidstatesciences.2011.08.025
Google Scholar
[13]
Z.S. Chen, M. Wang, H.Q. Wang, Z.G. Le, G.L. Huang, L.X. Zou, Z.R. Liu, D.Y. Wang, Q.K. Wang, W.P. Gong, Fabrication of Y2Ti2O7:Yb3+, Ho3+ nanoparticles by a gelcombustion approach and up converting luminescent properties, J. Alloy. Compd. 608 (2014) 165-169.
DOI: 10.1016/j.jallcom.2014.04.101
Google Scholar
[14]
L.M. Ershova, B.V. Ignatev, L.P. Kusalova, Synthesis of single-crystals of rare-earth titanates, and an investigation of their physical-properties, Inorg. Mater. 13 (1977) 1634-1636.
Google Scholar
[15]
U. Peuchert, Y. Menke, Optoceramics, Optical elements manufactured thereof and their use as well as imaging optics, U.S. Patent 7,710,656. (2010).
Google Scholar
[16]
X.J. Wang, J.J. Xie, Z.J. Wang, G.H. Zhou, Y. Shi, S.W. Wang, X.J. Mao, Fabrication and properties of Y2Ti2O7 transparent ceramics with excess Y content, Ceram. Int. 44 (2018) 9514–9518.
DOI: 10.1016/j.ceramint.2018.06.184
Google Scholar
[17]
Z.J. Wang, X.J. Wang, G.H. Zhou, J.J. Xie, S.W. Wang, Highly transparent yttrium titanate (Y2Ti2O7) ceramics from co-precipitated powders, J. Eur. Ceram. Soc. 39 (2019) 3229-3234.
DOI: 10.1016/j.jeurceramsoc.2019.04.018
Google Scholar
[18]
M. I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443-446.
Google Scholar
[19]
E. Irorn, M. Zakeri, A.S.A.H. Zadeh, Effect of annealing process on IR transmission and mechanical properties of spark plasma sintered Yttria, Ceram. Int. 44 (2018) 1668-1674.
DOI: 10.1016/j.ceramint.2017.10.092
Google Scholar
[20]
D. Jiang, A.K. Mukherjee, The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite, Scr. Mater. 64 (2011) 1095-1097.
DOI: 10.1016/j.scriptamat.2011.02.029
Google Scholar
[21]
C.C. Ting, C.W. Chang, L.C. Chuang, C.H. Li, Y.S. Chiu, Structural and optical properties of Er3+-doped Y2Ti2O7 thin films by sol-gel method, Thin Solid Films 518 (2010) 5704-5710.
DOI: 10.1016/j.tsf.2010.05.052
Google Scholar
[22]
M.J. Weber, Handbook of Optical Materials, CRC press, (2018).
Google Scholar
[23]
U. Anselmi-Tamburini, J.N. Woolman, Z. Munir, Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering, Adv. Funct. Mater. 17 (2007) 3267-3273.
DOI: 10.1002/adfm.200600959
Google Scholar