Fabrication of Y2Ti2O7 Transparent Ceramic by Spark Plasma Sintering

Article Preview

Abstract:

Y2Ti2O7 transparent ceramic was fabricated by reactive sintering using spark plasma sintering at 1673 K for 2.7 ks. The sintered body exhibited a cubic pyrochlore structure and uniform microstructure with an average grain size of 2.9 μm. The transmittance reached 73% at a wavelength of 2000 nm after annealing at 1023 K for 21.6 ks.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

663-667

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.L. Messing, A.J. Stevenson, Toward pore-free ceramics, Science 322 (2008) 383-384.

DOI: 10.1126/science.1160903

Google Scholar

[2] A. Goldsterin, A. Krell, Transparent ceramic at 50: progress made and further prospects, J. Am. Ceram. Soc. 99 (2016) 3173-3197.

DOI: 10.1111/jace.14553

Google Scholar

[3] Z. Xiao, S. Yu, Y. Li, S. Ruan, L. B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang, Materials development and potential applications of transparent ceramics: A review, Mater. Sci. Eng. R Rep. 139 (2020) 100518.

DOI: 10.1016/j.mser.2019.100518

Google Scholar

[4] D.L. Jiang, Transparent ceramics: one of the most important field of research and development of inorganic materials, J. Inorg. Mater. 24 (2009) 873-881.

DOI: 10.3724/sp.j.1077.2009.00873

Google Scholar

[5] Z.A. Munir, D. V. Quach, M. Ohyanagi, Electric current activation of sintering: a review of the pulsed electric current sintering process, J. Am. Ceram. Soc. 94 (2011) 1-19.

DOI: 10.1111/j.1551-2916.2010.04210.x

Google Scholar

[6] O. Gillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16 (2014) 830-849.

DOI: 10.1002/adem.201300409

Google Scholar

[7] Z.Y. Hu, Z.H. Zhang, X. W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications, Mater. Des. 191 (2020) 108662.

DOI: 10.1016/j.matdes.2020.108662

Google Scholar

[8] L.Q. An, A. Ito, J. Zhang, D.Y. Tang, T. Goto, Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation, Opt. Mater. Express 4 (2014) 1420-1426.

DOI: 10.1364/ome.4.001420

Google Scholar

[9] M. Jafar, S.N. Achary, N.P. Salke, A.K. Sahu, R. Rao, A.K. Tyagi, X-ray diffraction and Raman spectroscopic investigations on CaZrTi2O7-Y2Ti2O7 system: delineation of phase fields consisting of potential ceramic host materials, J. Nucl. Mater. 475 (2016) 192-199.

DOI: 10.1016/j.jnucmat.2016.04.016

Google Scholar

[10] J.Y. Ding, Y. Xiao, Z.F. Wang, L.X. Wang, Q.T. Zhang, Effects of additives on dielectric properties of Y2Ti2O7 ceramics, J. Inorg. Mater. 26 (2011) 327-331.

Google Scholar

[11] R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, Photocatalytic activity of R3MO7 and R2Ti2O7 (R= Y, Gd, La; M =Nb, Ta) for water splitting into H2 and O2, J. Phys. Chem. 110 (2016) 2219-2226.

DOI: 10.1002/chin.200616023

Google Scholar

[12] J.K. Gill, O.P. Pandey, K. Singh, Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC, Solid State Sci. 13 (2011) 1960-1966.

DOI: 10.1016/j.solidstatesciences.2011.08.025

Google Scholar

[13] Z.S. Chen, M. Wang, H.Q. Wang, Z.G. Le, G.L. Huang, L.X. Zou, Z.R. Liu, D.Y. Wang, Q.K. Wang, W.P. Gong, Fabrication of Y2Ti2O7:Yb3+, Ho3+ nanoparticles by a gelcombustion approach and up converting luminescent properties, J. Alloy. Compd. 608 (2014) 165-169.

DOI: 10.1016/j.jallcom.2014.04.101

Google Scholar

[14] L.M. Ershova, B.V. Ignatev, L.P. Kusalova, Synthesis of single-crystals of rare-earth titanates, and an investigation of their physical-properties, Inorg. Mater. 13 (1977) 1634-1636.

Google Scholar

[15] U. Peuchert, Y. Menke, Optoceramics, Optical elements manufactured thereof and their use as well as imaging optics, U.S. Patent 7,710,656. (2010).

Google Scholar

[16] X.J. Wang, J.J. Xie, Z.J. Wang, G.H. Zhou, Y. Shi, S.W. Wang, X.J. Mao, Fabrication and properties of Y2Ti2O7 transparent ceramics with excess Y content, Ceram. Int. 44 (2018) 9514–9518.

DOI: 10.1016/j.ceramint.2018.06.184

Google Scholar

[17] Z.J. Wang, X.J. Wang, G.H. Zhou, J.J. Xie, S.W. Wang, Highly transparent yttrium titanate (Y2Ti2O7) ceramics from co-precipitated powders, J. Eur. Ceram. Soc. 39 (2019) 3229-3234.

DOI: 10.1016/j.jeurceramsoc.2019.04.018

Google Scholar

[18] M. I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443-446.

Google Scholar

[19] E. Irorn, M. Zakeri, A.S.A.H. Zadeh, Effect of annealing process on IR transmission and mechanical properties of spark plasma sintered Yttria, Ceram. Int. 44 (2018) 1668-1674.

DOI: 10.1016/j.ceramint.2017.10.092

Google Scholar

[20] D. Jiang, A.K. Mukherjee, The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite, Scr. Mater. 64 (2011) 1095-1097.

DOI: 10.1016/j.scriptamat.2011.02.029

Google Scholar

[21] C.C. Ting, C.W. Chang, L.C. Chuang, C.H. Li, Y.S. Chiu, Structural and optical properties of Er3+-doped Y2Ti2O7 thin films by sol-gel method, Thin Solid Films 518 (2010) 5704-5710.

DOI: 10.1016/j.tsf.2010.05.052

Google Scholar

[22] M.J. Weber, Handbook of Optical Materials, CRC press, (2018).

Google Scholar

[23] U. Anselmi-Tamburini, J.N. Woolman, Z. Munir, Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering, Adv. Funct. Mater. 17 (2007) 3267-3273.

DOI: 10.1002/adfm.200600959

Google Scholar