[1]
Filho W J B, Fogagnolo J B, Rodrigues C A D, et al. Consolidation of partially amorphous aluminium-alloy powders by severe plastic deformation[J]. Materials Science & Engineering A, 2004, 375-377(1): 936-941.
DOI: 10.1016/j.msea.2003.10.072
Google Scholar
[2]
Jiang J, Ketov S, Kato H, et al. Effect of the cooling rate on the mechanical properties of Ti-Ni-Cu-Zr-based crystal/glassy alloys[J]. Materials Science and Engineering: A, 2017, 704:147-153.
DOI: 10.1016/j.msea.2017.08.016
Google Scholar
[3]
Inoue A. Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region[J]. Mater. trans. jim, 2007, 30(3-4): 131-135.
DOI: 10.2320/matertrans1989.30.965
Google Scholar
[4]
Cheng J L, Chen G, Fan C, et al. Glass formation, microstructure evolution and mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5, and its surrounding alloys[J]. Acta Materialia, 2014, 73(4): 194-204.
DOI: 10.1016/j.actamat.2014.04.003
Google Scholar
[5]
Jiang Q K, Wang X D, Nie X P, et al. Zr–(Cu,Ag)–Al bulk metallic glasses[J]. Acta Materialia, 2008, 56(8): 1785-1796.
DOI: 10.1016/j.actamat.2007.12.030
Google Scholar
[6]
Lou H B, Wang X D, Xu F , et al. 73 mm-diameter bulk metallic glass rod by copper mould casting[J]. Applied Physics Letters, 2011, 99(5):279.
DOI: 10.1063/1.3621862
Google Scholar
[7]
Yang Ke, FAN Xinhui, LI Yanhong, et al. Preparation of Cu-ZR based amorphous alloys from low purity materials [J]. Rare metals, 2017, 41(8): 877-883.
Google Scholar
[8]
Bhowmick R, Majumdar B, Misra D K, et al. Synthesis of bulk metallic glass composites using high oxygen containing Zr sponge[J]. Journal of Materials Science, 2007, 42(22): 9359-9365.
DOI: 10.1007/s10853-007-1856-7
Google Scholar
[9]
Keryvin V, Nadot Y, Yokoyama Y. Fatigue pre-cracking and toughness of the Zr55Cu30Al10Ni5 bulk metallic glass for two oxygen levels[J]. Scripta Materialia, 2007, 57(2):145-148.
DOI: 10.1016/j.scriptamat.2007.03.042
Google Scholar
[10]
Jiang J, Ketov S , Kato H , et al. Effect of the cooling rate on the mechanical properties of Ti-Ni-Cu-Zr-based crystal/glassy alloys[J]. Materials ence and Engineering A, 2017, 704(sep.17): 147-153.
DOI: 10.1016/j.msea.2017.08.016
Google Scholar
[11]
Z J Ma, Y C Guo, Lugee T, et al. The effect of cooling rate on the plasticity of amorphous metal[J]. Journal of Alloys and Compounds. 2015, 648: 18-21.
Google Scholar
[12]
Yongjiang Huang, Hongbo Fan, Dongjun Wang, et al. The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass[J]. Materials and Design, 2014, 58: 284-289.
DOI: 10.1016/j.matdes.2014.01.067
Google Scholar
[13]
Venkatesh V, Gouthama, Mondal K. Effect of cast temperature, size and annealing condition on the serrated flow during nano-indentation of Zr-based bulk metallic glasses[J]. Journal of Alloys & Compounds, 2017, 692: 745-757.
DOI: 10.1016/j.jallcom.2016.09.033
Google Scholar
[14]
Li Zhilin. Mechanical behavior and High-speed impact characteristics of ZR-based amorphous alloys [D]. Harbin Institute of Technology, (2015).
Google Scholar
[15]
Ma D Q, Yuan S Q, Ma X Z, et al. Microstructural evolution and tensile properties of an, in-situ, TiZr-based bulk metallic glass matrix composite after hot-pressing deformation in its supercooled liquid region[J]. Journal of Alloys and Compounds, 2018, 768: 415-424.
DOI: 10.1016/j.jallcom.2018.07.266
Google Scholar
[16]
Qu D D, Liss K D, Sun Y J, et al. Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass[J]. Acta Materialia, 2013, 61(1): 321-330.
DOI: 10.1016/j.actamat.2012.09.062
Google Scholar
[17]
Wu F F, Chan K C, Jiang S S, et al. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit[J]. Scientific Reports, 2014, 4: 1-6.
DOI: 10.1038/srep05302
Google Scholar
[18]
Chang H W, Huang Y C, Chang C W, et al. Soft magnetic properties and glass formability of Y–Fe–B–M bulk metals (M = Al, Hf, Nb, Ta, and Ti)[J]. Journal of Alloys & Compounds, 2009, 472(1): 166-170.
DOI: 10.1016/j.jallcom.2008.05.014
Google Scholar
[19]
Inoue A, Shen B L, Koshiba H, et al. Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys[J]. Acta Materialia, 2004, 52(6): 1631-1637.
DOI: 10.1016/j.actamat.2003.12.008
Google Scholar
[20]
Tiberto P, Baricco M, Olivetti E, et al. Magnetic Properties of Bulk Metallic Glasses[J]. Advanced Engineering Materials, 2010, 9(6): 468-474.
DOI: 10.1002/adem.200700050
Google Scholar
[21]
Li Gong, WANG Yongyong. Research progress of bulk amorphous alloys [J]. Journal of Yanshan University, 2012, 36(1): 1-7.
Google Scholar
[22]
Guo S F, Zhang H J, Liu Z, et al. Corrosion resistances of amorphous and crystalline Zr-based alloys in simulated seawater[J]. Electrochemistry Communications, 2012, 24(1): 39-42.
DOI: 10.1016/j.elecom.2012.08.006
Google Scholar
[23]
Hofmann D C, Polit-Casillas R, Roberts S N, et al. Castable Bulk Metallic Glass Strain Wave Gears: Towards Decreasing the Cost of High-Performance Robotics[J]. Scientific Reports, 2016, 6: 1-11.
DOI: 10.1038/srep37773
Google Scholar
[24]
P Y Li. Relationship between vein-like pattern and plasticity[J]. Results in Physics, 2017, 7: 1513-1515.
Google Scholar