[1]
Szeliga D P, Kubiak K, Motyka M, et al.. Directional solidification of Ni-based superalloy castings: Thermal analysis [J]. Vacuum, 2016, 131: 327-342.
DOI: 10.1016/j.vacuum.2016.07.009
Google Scholar
[2]
Jia Z H, Ma A L, Zhao Y T, et. al.. Simulation and experimental analysis on crystal selection behavior of spiral grain selector for single crystal superalloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(3): 242-246.
Google Scholar
[3]
Ning Wang, Lin Liu, Sifeng Gao, Xinbao Zhao, Taiwen Huang, Jun Zhang, Hengzhi Fu. Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. Journal of Alloys and Compounds, 2014, 586: 220-229.
DOI: 10.1016/j.jallcom.2013.10.036
Google Scholar
[4]
Yang C B, Liu L, Ning L, et. al.. Orientation characteristics of single crystal super alloys with different preparation methods[J]. Rare Metal materials and Engineering, 2017, 46(4): 912-916.
DOI: 10.1016/s1875-5372(17)30121-2
Google Scholar
[5]
Roger C. Reed. The superalloy fundamentals and applications. Cambridge University Press. UK, (2006).
Google Scholar
[6]
Hong-Qi Z, Jun Z, Ya-Feng L I, et al. Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. Foundry, 2014, 63(2): 128-131.
Google Scholar
[7]
Rezaei M, Kertmanpur A, Sadeghi F. Effects of withdrawal rate and starter block size on crystal orientation of a single crystal Ni-based superalloy [J]. Journal of crystal growth, 2018, 485: 19-27.
DOI: 10.1016/j.jcrysgro.2017.12.040
Google Scholar
[8]
Yang X, Dong H, Wang W, et al.. Microscale simulation of stray grain formation in investment cast turbine blades[J]. Materials Science and Engineering A, 2004, 386(1-2): 129-139.
DOI: 10.1016/s0921-5093(04)00914-1
Google Scholar
[9]
Anderson T D, Dupont J N, Debroy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling[J]. Acta Materialia, 2010, 58(4):1441-1454.
DOI: 10.1016/j.actamat.2009.10.051
Google Scholar
[10]
Xuan W D, Ren Z M, Liu H, et al. Formation of stray grains in directionally solidified Ni-based superalloy with cross-section change regions[J]. Materials Science Forum, 2013, 747-748:535-539.
DOI: 10.4028/www.scientific.net/msf.747-748.535
Google Scholar
[11]
A. B. Shapiro, TOPAZ: A finite element heat conduction code for analyzing 2-D solids, Lawrence Livermore Laboratory, California (1984).
Google Scholar
[12]
ProCAST-The Professional Casting simulation system user manual, Universal Energy Systems, Inc., Ohio, (1988).
Google Scholar
[13]
R. W. Lewis and P. M. Roberts: Modeling the flow and solidification of metals, ed. T. J. Smith, Boston (1987).
Google Scholar
[14]
P. Thevoz, J.-L. Debiolles and M. Rappaz. Modeling of equiaxed microstructure formation in casting[J]. Metallurgical and Materials Transactions A. 1989, 20A: 311-322.
DOI: 10.1007/bf02670257
Google Scholar
[15]
W. Kurz, B. Giovanola, R. Trivedi. Theory of Microstructural Development During Rapid Solidification[J]. Acta Metallurgica, 1986, 34(5): 823-830.
DOI: 10.1016/0001-6160(86)90056-8
Google Scholar
[16]
M. Rappaz and Ph. Thevoz. Solute diffusion model for equiaxed dendritic growth[J]. Acta Metallurgica, 1987, 35: 1487-1497.
DOI: 10.1016/0001-6160(87)90094-0
Google Scholar
[17]
A. De Bussac, Ch.-A. Gandin. Prediction of a process window for the investment casting of dendritic single crystals[J]. Materials Science and Engineering, 1997, A237: 35-42.
DOI: 10.1016/s0921-5093(97)00081-6
Google Scholar