Effect of Restored Energy Items in Recrystallization Simulation of AZ31 Magnesium Alloy

Article Preview

Abstract:

The effect of restored energy items in recrystallization simulation of AZ31 Mg alloy was studied with multi-order phase field model, and the impact factors during the recrystallization were discussed by changing the parameters of the restored energy item. The simulation results showed that the greater the restored energy, the greater the number of the recrystallized grains.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

827-832

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. C. Liu, J. G. Morris. Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy, Metal. Mater.Trans. A. 36(2005) 2829-2848.

DOI: 10.1007/s11661-005-0279-9

Google Scholar

[2] G. Pimentel, J. Chao, C. Capdevila. Recrystallization Process in Fe-Cr-Al Oxide Dispersion-Strengthened Alloy: Microstructural Evolution and Recrystallization Mechanism, JOM, 66(2014) 780-792.

DOI: 10.1007/s11837-014-0916-0

Google Scholar

[3] H. J. Zhu, F. Chen. Review on modeling and simulation of microstructure evolution during dynamic recrystallization using cellular automaton method, Sci. China Tech. Sci. 63(2020) 357-396.

DOI: 10.1007/s11431-019-9548-x

Google Scholar

[4] P. Asadi, M. K. B. Givi, M. Akbari. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy, Inter. J. Ad. Manuf. 83(2016) 301-311.Y. Wu, B. [5] Y. Zong, X. G. Zhang and M. T. Wang. Grain growth in multiple scales of polycrystalline AZ31 magnesium alloy by phase field simulation. Metal. Mater.Trans. A. 44 (2013) 1599-1610.

DOI: 10.1007/s00170-015-7595-z

Google Scholar

[6] Y. Wu, Y. P. Zong, J. F. Jin. Grain growth in a nanostructured AZ31 Mg alloy containing second phase particles studied by phase field simulations. Sci. Chin. Mater. 59 (2016) 355-362.

DOI: 10.1007/s40843-016-5036-4

Google Scholar

[7] D.N. Fan and L.Q. Chen. Computer simulation of grain growth using a continuum field model, Acta Matall. 45(1997) 611-622.

DOI: 10.1016/s1359-6454(96)00200-5

Google Scholar

[8] M. Wang, B.Y. Zong and G. Wang. A phase-field model to simulate recrystallization in an AZ31 Mg alloy in comparison of experimental data, J Mater. Sci.Tech. 24 (2008), 829-834.

Google Scholar

[9] A. D. Murphy, J. E. Allison.The Recrystallization Behavior of Unalloyed Mg and a Mg-Al Alloy, Metal. Mater.Trans. A. 49(2018) 1492-1508.

DOI: 10.1007/s11661-018-4494-6

Google Scholar

[10] C.E. Krill III and L.Q. Chen. Computer Simulation of 3-D grain growth using a phase-field model, Acta. Metall., 50(2002) 3059-3075.

DOI: 10.1016/s1359-6454(02)00084-8

Google Scholar

[11] R. C. Liu, L. Y. Wang, L. G. Gu, G. S. Huang. Study on Annealing Technique for Wrought Magnesium Alloy Plate and Modeling Research on the Changing Law of Its Grain Size, Light Alloy Process. Technol. 32(2004) 22-25.

Google Scholar

[12] J. Li. Foundation of material science, second ed., Publishing House of Metallurgical Industry, Beijing, 2006, pp.81-124.

Google Scholar