Experimental Study on Mechanical Properties and Micro-Mechanism of All-Solid-Waste Alkali Activated Binders Solidified Marine Soft Soil

Article Preview

Abstract:

Utilizing granulated blast furnace slag (GBFS), coal fly ash (FA), and furfural residue incineration ash (FRIA) as pozzolanic materials, then activated with calcium carbide residue (CCR) respectively to prepare all-solid-waste alkali activated binders (ASW binders). The laboratory tests were performed to research the effects of pozzolanic materials with different reactivity on the macro- and micro- characteristics of solidified marine soft soil. Results show that the mechanical properties and alkali-activation process of ASW binders solidified soil was determined mainly by the reactivity of pozzolanic materials, the higher reactivity of the pozzolanic materials in ASW binders couldn’t change the main hydration products, however, it would accelerate the hydrate reaction. The degree of hydrate reaction increased, the microstructure became denser with the increase of the reactivity of the pozzolanic materials in ASW binders solidified soil, on the macro- side, the strength and deformation modulus of the solidified soil increased, meanwhile, the brittleness of the solidified soil will be more obvious during the deformation resistance process. ASW binders (CCR:GBFS=1:1) solidified soil could reach the strength of cemented soil under the same conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

327-336

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kühl, U.S. Patent 900,939.(1908).

Google Scholar

[2] F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, et al, Handbook of alkali-activated cements, mortars and concretes, Woodhead Publishing, 2015, pp.1-10.

DOI: 10.1533/9781782422884.1

Google Scholar

[3] J.L. Provis, Alkali-activated materials, Cem. Concr. Res. 114(2018) 40-48.

Google Scholar

[4] A. Palomo, M.W. Grutzeck, M. T. Blanco, Alkali-activated fly ashes: A cement for the future, Cem. Concr. Res. 29(1999) 1323-1329.

DOI: 10.1016/s0008-8846(98)00243-9

Google Scholar

[5] Y.L. Yi, M. Liska, A. Al-Tabbaa, Properties of Two Model Soils Stabilized with Different Blends and Contents of GGBS, MgO, Lime, and PC, J. Mate. Civil Eng. 26(2014) 267-274.

DOI: 10.1061/(asce)mt.1943-5533.0000806

Google Scholar

[6] Y.L. Yi, C. Li, S.Y. Liu, Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay, J. Mate. Civil Eng. 27(2015)04014146.

DOI: 10.1061/(asce)mt.1943-5533.0001100

Google Scholar

[7] S. Pourakbar, B.B.K. Huat, A. Asadi, et al, Model Study of Alkali-Activated Waste Binder for Soil Stabilization, Int. J. of Geosynth. and Ground Eng. 2(2016)35.

DOI: 10.1007/s40891-016-0075-1

Google Scholar

[8] C. Phetchuay, S. Horpibulsuk, C Suksiripattanapong, et al, Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer, Constr. Build. Mater. 69(2014)285-294.

DOI: 10.1016/j.conbuildmat.2014.07.018

Google Scholar

[9] Y.Y. Liu, C.W. Chang, A. Namdar, et al, Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue, Constr. Build. Mater. 221(2019)1-11.

DOI: 10.1016/j.conbuildmat.2019.05.157

Google Scholar

[10] J.R. Yu, Y.H. Chen, G. Chen, et al, Mechanical behaviour of geopolymer stabilized clay and its mechanism, J. Build. Mater. 23(2020) 364-371.

Google Scholar

[11] S. Horpibulsuk, C. Phetchuay, A. Chinkulkijniwat, Soil Stabilization by Calcium Carbide Residue and Fly Ash, J. Mater. Civil Eng. 24(2012)184-193.

DOI: 10.1061/(asce)mt.1943-5533.0000370

Google Scholar

[12] S. Horpibulsuk, C. Phetchuay, A. Chinkulkijniwat, et al, Strength development in silty clay stabilized with calcium carbide residue and fly ash, Soils Found. 53(2013) 477-486.

DOI: 10.1016/j.sandf.2013.06.001

Google Scholar

[13] N. Cristelo, S. Glendinning, L. Fernandes, et al, Effect of calcium content on soil stabilisation with alkaline activation, Constr. Build. Mater. 29(2012)167-174.

DOI: 10.1016/j.conbuildmat.2011.10.049

Google Scholar

[14] Y.L. Yi, X. Zheng, S.Y. Liu, et al. Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil, Appl. Clay Sci. 111 (2015)21-26.

DOI: 10.1016/j.clay.2015.03.023

Google Scholar

[15] S.Y. Liu, G.H. Cai, Y.J. Du, et al, Engineering properties of carbonated reactive magnesia-stabilized silt under different activity index, Procedia Eng. 189(2017)158-165.

DOI: 10.1016/j.proeng.2017.05.026

Google Scholar

[16] S. Siddiqua, P.N.M. Barreto, Chemical stabilization of rammed earth using calcium carbide residue and fly ash, Constr. Build. Mater. 169(2018) 364-371.

DOI: 10.1016/j.conbuildmat.2018.02.209

Google Scholar

[17] S. Rios, N. Cristelo, A.V. da Fonseca, et al, Structural Performance of Alkali-Activated Soil Ash versus Soil Cement, J. Mate. Civil Eng. 28(2016)04015125.

DOI: 10.1061/(asce)mt.1943-5533.0001398

Google Scholar

[18] A.H. Rafiean, E.N. Kani, A. Haddad, Mechanical and Durability Properties of Poorly Graded Sandy Soil Stabilized with Activated Slag, J. Mate. Civil Eng. 32(2020) 04019324.

DOI: 10.1061/(asce)mt.1943-5533.0002990

Google Scholar

[19] The Professional Standards Compilation Group of the People's Republic of China. GB 50007-2011 Code for design of building foundation, China Architecture and Building Press, Beijing, (2012).

Google Scholar

[20] A. Fernéndez-Jiménez, A. Palomo, Characterization of fly ashes Potential reactivity as alkaline cements, Fuel 82(2003)2259-2265.

DOI: 10.1016/s0016-2361(03)00194-7

Google Scholar

[21] J.J. Geng, M. Zhou, Y.X. Li, et al, Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation, Constr. Build. Mater. 153(2017)185-192.

DOI: 10.1016/j.conbuildmat.2017.07.045

Google Scholar

[22] M. Yaghoubi, A. Arulrajah, M. M. Disfani, et al, Impact of field conditions on the strength development of a geopolymer stabilized marine clay, Appl. Clay Sci. 167(2019) 33-42.

DOI: 10.1016/j.clay.2018.10.005

Google Scholar

[23] I. Ismail, S.A. Bernal, J.L. Provis, et al, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos. 45(2014)125-135.

DOI: 10.1016/j.cemconcomp.2013.09.006

Google Scholar

[24] S. Horpibulsuk, A. Kampala, C. Phetchuay, et al, Calcium carbide residue - A cementing agent for sustainable soil stabilization, Geotech. Eng. 46(2015)22-27.

Google Scholar

[25] S. Vichan, R. Rachan, Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash, Soils Found. 53(2013)272-281.

DOI: 10.1016/j.sandf.2013.02.007

Google Scholar