[1]
K.L. Scrivener, R.J. Kirkpatrick, Innovation in use and research on cementitious material, Cem. Concr. Res. 38 (2008) 128-136.
Google Scholar
[2]
S. Pyo, H.K. Kim, Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder, Constr. Build. Mater. 131 (2017) 459-466.
DOI: 10.1016/j.conbuildmat.2016.10.109
Google Scholar
[3]
Information on https://www.sciencedirect.com/science/article/pii/S0950061820300593.
Google Scholar
[4]
M. Alkaysi , S. El-Tawil, Z. Liu, et al, Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC), Cem. Concr. Compos. 66 (2016) 47-56.
DOI: 10.1016/j.cemconcomp.2015.11.005
Google Scholar
[5]
N. Randl, T. Steiner, S. Ofner, et al, Development of UHPC mixtures from an ecological point of view, Constr. Build. Mater. 67 (2014) 373-378.
DOI: 10.1016/j.conbuildmat.2013.12.102
Google Scholar
[6]
M. Zhou, W. Lu, J.W. Song, et al, Application of ultra-high performance concrete in bridge engineering, Constr. Build. Mater. 186 (2018) 1256-1267.
Google Scholar
[7]
V. Matte, M. Moranville, F. Adenot, et al, Simulated microstructure and transport properties of ultra-high performance cement-based materials, Cem. Concr. Res. 30 (2000) 1947-1954.
DOI: 10.1016/s0008-8846(00)00288-x
Google Scholar
[8]
Y.S. Tai, H.H. Pan, Y.N. Kung, Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800°C, Nucl. Eng. Des. 241 (2011) 2416-2424.
DOI: 10.1016/j.nucengdes.2011.04.008
Google Scholar
[9]
Information on https://www.sciencedirect.com/science/article/pii/S0950061819323669.
Google Scholar
[10]
K.W. Ng, J. Garder, S. Sritharan, Investigation of ultra high performance concrete piles for integral abutment bridges, Eng. Struct. 105 (2015) 220-230.
DOI: 10.1016/j.engstruct.2015.10.009
Google Scholar
[11]
Information on https://www.sciencedirect.com/science/article/pii/S0950061819333008.
Google Scholar
[12]
Information on https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201902&filename=1019209126.nh.
Google Scholar
[13]
S. Pyo, T. Koh, M. Tafesse, et al, Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness, Constr. Build. Mater. 224 (2019) 206-213.
DOI: 10.1016/j.conbuildmat.2019.07.063
Google Scholar
[14]
Information on https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201502&filename=1015900549.nh.
Google Scholar
[15]
S. Pyo, M. Tafesse, H. Kim, et al, Effect of chloride content on mechanical properties of ultra high performance concrete, Cem. Concr. Compos. 84 (2017) 175-187.
DOI: 10.1016/j.cemconcomp.2017.09.006
Google Scholar
[16]
V. Marcos-Meson, A. Michel, A. Solgaard, et al, Corrosion resistance of steel fibre reinforced concrete - A literature review, Cem. Concr. Res. 103 (2018) 1-20.
DOI: 10.1016/j.cemconres.2017.05.016
Google Scholar
[17]
G. Chen, M.N.S. Hadi, D. Gao, et al, Experimental study on the properties of corroded steel fibres, Constr. Build. Mater. 79 (2015) 165-172.
Google Scholar
[18]
P.S. Mangat, K. Gurusamy, Corrosion resistance of steel fibres in concrete under marine exposure, Cem. Concr. Res. 18 (1988) 44-54.
DOI: 10.1016/0008-8846(88)90120-2
Google Scholar
[19]
J.P. Hwang, M.S. Jung, M. Kim, et al, Corrosion risk of steel fibre in concrete, Constr. Build. Mater. 101 (2015) 239-245.
Google Scholar
[20]
J. Liu, B. Zhang, W.H. Qi, et al, Corrosion response of zinc phosphate conversion coating on steel fibers for concrete applications, J. Mater. Res. Technol. 9 (2020) 5912-5921.
DOI: 10.1016/j.jmrt.2020.03.117
Google Scholar
[21]
X.G. Zhang, Corrosion and electrochemistry of zinc, Springer, US, (1996).
Google Scholar
[22]
S. Abbas, A.M. Soliman, M.L. Nehdi, Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages, Constr. Build. Mater. 75 (2015) 429-441.
DOI: 10.1016/j.conbuildmat.2014.11.017
Google Scholar
[23]
R. Hay, C.P. Ostertag, Influence of transverse cracks and interfacial damage on corrosion of steel in concrete with and without fiber hybridization, Corros. Sci. 153 (2019) 213-224.
DOI: 10.1016/j.corsci.2019.03.020
Google Scholar
[24]
J.P. Vincler, T. Sanchez, V. Turgeon, et al, A modified accelerated chloride migration tests for UHPC and UHPFRC with PVA and steel fibers, Cem. Concr. Res. 117 (2019) 38-44.
DOI: 10.1016/j.cemconres.2018.12.006
Google Scholar
[25]
Information on https://www.sciencedirect.com/science/article/pii/S1359836819335322.
Google Scholar
[26]
L.F. De, T. Sedran, Optimization of ultra-high-performance concrete by the use of a packing model, Cem. Concr. Res. 24 (1994) 997-1009.
DOI: 10.1016/0008-8846(94)90022-1
Google Scholar
[27]
P. Richard, M. Cheyrezy, Composition of reactive powder concretes, Cem. Concr. Res. 25 (1995) 1501-1511.
DOI: 10.1016/0008-8846(95)00144-2
Google Scholar
[28]
J.F. Burroughs, J. Weiss, J.E. Haddock, et al, Influence of high volumes of silica fume on the rheological behavior of oil well cement pastes, Constr. Build. Mater. 203 (2019) 401-407.
DOI: 10.1016/j.conbuildmat.2019.01.027
Google Scholar
[29]
M.Z. An, Y. Wang, Z.R. Yu, Damage mechanisms of ultra-high-performance concrete under freeze–thaw cycling in salt solution considering the effect of rehydration, Constr. Build. Mater. 198 (2019) 546-552.
DOI: 10.1016/j.conbuildmat.2018.11.175
Google Scholar
[30]
B.G. Han, L.Q. Zhang, S.Z Zeng, et al, Nano-core effect in nano-engineered cementitious composites, Compos. Part A: Appl. Sci. Manuf. 95 (2017) 100-109.
DOI: 10.1016/j.compositesa.2017.01.008
Google Scholar
[31]
X.D. He, X.M. Shi, Chloride permeability and microstructure of portland cement mortars incorporating nanomaterials, Transp. Res. Rec.2070 (2008) 13-21.
DOI: 10.3141/2070-03
Google Scholar
[32]
D.N. Wang, W. Zhang, Y.F. Ruan, et al, Enhancements and mechanisms of nanoparticles on wear resistance and chloride penetration resistance of reactive powder concrete, Constr. Build. Mater. 189 (2018) 487-497.
DOI: 10.1016/j.conbuildmat.2018.09.041
Google Scholar
[33]
Information on https://iopscience.iop.org/article/10.1088/2053-1591/aa87db/meta.
Google Scholar
[34]
B.G. Han, Z. Li, L.Q. Zhang, et al, Reactive powder concrete reinforced with nano SiO2-coated TiO2, Constr. Build. Mater. 148 (2017) 104-112.
DOI: 10.1016/j.conbuildmat.2017.05.065
Google Scholar
[35]
T. Meng, Y.C. Yu, X.Q. Qian, et al, Effect of nano-TiO2 on the mechanical properties of cement mortar, Constr. Build. Mater. 29 (2012) 241-245.
DOI: 10.1016/j.conbuildmat.2011.10.047
Google Scholar
[36]
P. Hosseini, A. Booshehrian, A. Madari, Developing concrete recycling strategies by utilization of nano-SiO2 particles, Waste. Biomass. Valorization. 2 (2011) 347-355.
DOI: 10.1007/s12649-011-9071-9
Google Scholar
[37]
A. Beglarigale, H. Yazici, Electrochemical corrosion monitoring of steel fiber embedded in cement based composites, Cem. Concr. Compos. 83 (2017) 427-446.
DOI: 10.1016/j.cemconcomp.2017.08.004
Google Scholar
[38]
C. Andrade, C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Mater. Struct. 37 (2004) 623-643.
DOI: 10.1007/bf02483292
Google Scholar
[39]
B. Lothenbach, F. Winnefeld, C. Alder, et al, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cem. Concr. Res. 37 (2007) 483-491.
DOI: 10.1016/j.cemconres.2006.11.016
Google Scholar
[40]
K.O. Kjellsen, Heat curing and post-heat curing regimes of high-performance concrete: Influence on microstructure and C-S-H composition, Cem. Concr. Res. 26 (1996) 295-307.
DOI: 10.1016/0008-8846(95)00202-2
Google Scholar
[41]
R. Wang, P.M. Wang, X.G. Li, Physical and mechanical properties of styrene–butadiene rubber emulsion modified cement mortars, Cem. Concr. Res. 35 (2005) 900-906.
DOI: 10.1016/j.cemconres.2004.07.012
Google Scholar
[42]
A. Çolak, Properties of plain and latex modified portland cement pastes and concretes with and without superplasticizer, Cem. Concr. Res. 35 (2005) 1510-1521.
DOI: 10.1016/j.cemconres.2004.11.012
Google Scholar
[43]
J.H. Kim, R.E. Robertson, Prevention of air void formation in polymer-modified cement mortar by pre-wetting, Cem. Concr. Res. 27 (1997) 171-176.
DOI: 10.1016/s0008-8846(97)00001-x
Google Scholar
[44]
D.Y. Yoo, K.H. Min, J.H. Lee, et al, Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age, Constr. Build. Mater. 73 (2014) 357-365.
DOI: 10.1016/j.conbuildmat.2014.09.097
Google Scholar
[45]
D.Y. Yoo, S. Kim, M.J. Kim, Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions, Constr. Build. Mater. 162 (2018) 406-419.
DOI: 10.1016/j.conbuildmat.2017.12.029
Google Scholar
[46]
K. Hashimoto, T. Toyoda, H. Yokota, et al, Tension-softening behavior and chloride ion diffusivity of cracked ultra-high strength fiber reinforced concrete, in: RILEM-fib-AFGC International Symposium on Ultra High Performance Fibre-Reinforced Concrete, Marseille, France, 2014, pp.257-264.
DOI: 10.1007/978-3-030-83719-8_82
Google Scholar
[47]
R. Zhang, A. Castel, R. François, The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment, Cem. Concr. Res. 39 (2009) 1077-1086.
DOI: 10.1016/j.cemconres.2009.07.025
Google Scholar
[48]
J.H. Long, The stick strength between the steel fiber and the base body interface, J. Hefei Univ.Technol:Nat. Sci. Ed. S1 (1999) 3-5.
Google Scholar
[49]
C. Frazão, J. Barros, A. Camões, et al, Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete, Cem. Concr. Res. 79 (2016) 112-122.
DOI: 10.1016/j.cemconres.2015.09.005
Google Scholar
[50]
N. Banthia, C. Foy, Marine curing of steel fiber composites, J. Mater. Civ. Eng. 1 (1989) 86-96.
DOI: 10.1061/(asce)0899-1561(1989)1:2(86)
Google Scholar
[51]
E. Alizade, F.J. Alaee, S. Zabihi, Effect of steel fiber corrosion on mechanical properties of steel fiber reinforced concrete, Asian J. Civ. Eng. 17 (2016) 147-158.
Google Scholar
[52]
D.Y. Yoo, J.Y. Gim, B. Chun, Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete, J. Mater. Res. Technol. 9 (2020) 3632-3648.
DOI: 10.1016/j.jmrt.2020.01.101
Google Scholar
[53]
Information on https://www.sciencedirect.com/science/article/pii/S0958946520300585.
Google Scholar
[54]
M.F. Ba, C.X. Qian, X.J. Guo, et al, Effects of steam curing on strength and porous structure of concrete with low water/binder ratio, Constr. Build. Mater. 25 (2011) 123-128.
DOI: 10.1016/j.conbuildmat.2010.06.049
Google Scholar
[55]
V. Živica, Effects of the very low water/cement ratio, Constr. Build. Mater. 23 (2009) 3579-3582.
DOI: 10.1016/j.conbuildmat.2009.03.014
Google Scholar
[56]
Q.L. Song, R. Yu, Z.H. Shui, et al, Steel fibre content and interconnection induced electrochemical corrosion of ultra-high performance fibre reinforced concrete (UHPFRC), Cem. Concr. Compos. 94 (2018) 191-200.
DOI: 10.1016/j.cemconcomp.2018.09.010
Google Scholar
[57]
W.N. Meng, K.H. Khayat, Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar, Compos. B. Eng. 117 (2017) 26-34.
DOI: 10.1016/j.compositesb.2017.02.019
Google Scholar
[58]
L. Fan, Y. Bao, W.N. Meng, et al, In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor, Compos. B. Eng. 165 (2019) 679–689.
DOI: 10.1016/j.compositesb.2019.02.051
Google Scholar
[59]
V. Vignal, V. Rault, H. Krawiec, et al, Microstructure and corrosion behaviour of deformed pearlitic and brass-coated pearlitic steels in sodium chloride solution, Electrochim. Acta. 203 (2016) 416-425.
DOI: 10.1016/j.electacta.2016.03.005
Google Scholar
[60]
A.K. Someh, N. Saeki, The role of galvanic steel fibers in corrosion-protection of reinforced concrete, Proc. Japan. Concr. Inst. 19 (1997) 889-894.
Google Scholar
[61]
R. Roque, N. Kim, B. Kim, et al, Durability of fiber-reinforced concrete in florida environments, Florida Department of Transportation, US, (2009).
Google Scholar
[62]
F. Tang, G. Chen, R.K. Brow, Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar, Cem. Concr. Res. 82 (2016) 58-73.
DOI: 10.1016/j.cemconres.2015.12.015
Google Scholar
[63]
B.R. Andres, H. Karla, D.W. Klaartje, et al, Macrocell corrosion in carbonated portland and portland-fly ash concrete - contribution and mechanism, Cem. Concr. Res. 116 (2019) 273-283.
DOI: 10.1016/j.cemconres.2018.12.005
Google Scholar
[64]
M.I. Khan, Y.M. Abbas, G. Fares, Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines, J.King Saud. Univ: Eng. Sci.Ed. 29 (2017) 339-347.
DOI: 10.1016/j.jksues.2017.03.006
Google Scholar
[65]
E. Pereira, G. Fischer, J.A.O. Barros, Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites, Cem. Concr. Compos. 34 (2012) 1114-1123.
DOI: 10.1016/j.cemconcomp.2012.08.004
Google Scholar
[66]
N. Banthia, N. Nandakumar, Crack growth resistance of hybrid fiber reinforced cement composites, Cem. Concr. Compos. 25 (2003) 3-9.
DOI: 10.1016/s0958-9465(01)00043-9
Google Scholar
[67]
K. Hannawi, H. Bian, W. Prince-Agbodjan, et al, Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes, Compos. B. Eng. 86 (2016) 214–220.
DOI: 10.1016/j.compositesb.2015.09.059
Google Scholar
[68]
S.T. Kang, B.Y. Lee, J.K. Kim, et al, The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete, Constr. Build. Mater. 25 (2011) 2450-2457.
DOI: 10.1016/j.conbuildmat.2010.11.057
Google Scholar
[69]
S.T. Kang, J.I. Choi, K.T. Koh, et al, Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete, Compos. Struct. 145 (2016) 37-42.
DOI: 10.1016/j.compstruct.2016.02.075
Google Scholar
[70]
S. Mindess, Developments in the formulation and reinforcement of concrete, CRC Press, US, (2014).
Google Scholar
[71]
J.Z. Su, Y.J. Lin, B.C. Chen, et al, Hydrid effects of steel fibers on the uniaxial tensile properties of ultra-high performance concrete, J. Nanchang. Univ: Eng. Technol. Ed. 41 (2019) 358-364.
Google Scholar
[72]
K.Z. Ma, L. Liu, C. Liu, et al, Mechanical properties of hybrid steel fiber reinforced high strength concrete, J. Build. Mater. 20 (2017) 261-265.
Google Scholar
[73]
L. Bertolini, P. Pedeferri, Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete, Corros. Rev. 20 (2002) 129-152.
DOI: 10.1515/corrrev.2002.20.1-2.129
Google Scholar
[74]
Z.Y. Huang, D. Li, Study on the effect of stainless steel fiber on the performance of ultra-high performance concrete, J. Railway Sci. Eng. 16 (2019) 376-383.
Google Scholar