Research Progress on Carbonation Resistance of Alkali-Activated Slag Cement Concrete

Article Preview

Abstract:

The carbonation process in alkali-activated slag cement concrete is more complicated. This paper reviews the research progress of carbonation resistance of alkali-activated slag cement concrete at home and abroad and summarizes the existing research on carbonation. The focus is on the carbonation mechanism, test methods, influencing factors and the effect of carbonation on the performance of alkali-activated slag cement concrete. The problems existing in the current research on the anti-carbonation property of alkali-activated slag cement concrete and the issues for further research are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

347-357

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fernandezjimenez, J. G. Palomo, F. Puertas, et al, Alkali-activated slag mortars: mechanical strength behavior, Cem. Concr. Res. 29(1999)1313-1321.

DOI: 10.1016/s0008-8846(99)00154-4

Google Scholar

[2] C. Shi, Strength, pore structure and permeability of alkali-activated slag mortars, Cem. Concr. Res. 26(1996)1789-1799.

DOI: 10.1016/s0008-8846(96)00174-3

Google Scholar

[3] T. Bakharev, J. G. Sanjayan, Y. Cheng, et al, Sulfate attack on alkali-activated slag concrete, Cem. Concr. Res. 32(2002)211-216.

DOI: 10.1016/s0008-8846(01)00659-7

Google Scholar

[4] F. Puertas, R. Gutiérrez, A. Fernández-Jiménez, et al, Alkaline cement mortars. chemical resistance to sulfate and seawater attack, Mater. Constr. 52(2002)55-71.

DOI: 10.3989/mc.2002.v52.i267.326

Google Scholar

[5] T. Bakharev, J. G. Sanjayan, Y. Cheng, et al, Resistance of alkali-activated slag concrete to acid attack, Cem. Concr. Res. 33(2003)1607-1611.

DOI: 10.1016/s0008-8846(03)00125-x

Google Scholar

[6] D.M. Roy, Alkali-activated cements opportunities and challenges, Cem. Concr. Res. 29(1999) 249-254.

Google Scholar

[7] J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials, Cem. Concr. Res. 78(2015)110-125.

DOI: 10.1016/j.cemconres.2015.04.013

Google Scholar

[8] A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-a guide for civil engineer, Constr. Build. Mater. 47(2013)29-55.

DOI: 10.1016/j.conbuildmat.2013.04.011

Google Scholar

[9] T. Bakharev, J.G. Sanjayan, Y. Cheng, et al, Resistance of alkali-activated slag concrete to carbonation, Cem. Concr. Res. 31(2001)1277-1283.

DOI: 10.1016/s0008-8846(01)00574-9

Google Scholar

[10] B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cem. Concr. Res. 31(2001)925-931.

DOI: 10.1016/s0008-8846(01)00498-7

Google Scholar

[11] M.F. Bertos, S.J. Simons, C. Hills, et al, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, J. Hazard. Mater. 112(2004)193-205.

DOI: 10.1016/j.jhazmat.2004.04.019

Google Scholar

[12] F. Puertas, M. Palacios, T. Vazquez, et al, Carbonation process of alkali-activated slag mortars, J. Mater. Sci. 41(2006)3071-3082.

DOI: 10.1007/s10853-005-1821-2

Google Scholar

[13] M. Palacios, F. Puertas, Effect of carbonation on alkali-activated slag paste, J. Am. Ceram. Soc. 89(2006)3211-3221.

DOI: 10.1111/j.1551-2916.2006.01214.x

Google Scholar

[14] J. He. Research on the carbonation behavior and mechanism of hardened alkali-activated slag cement pastes, Master's thesis, Chongqing University, China, (2011).

Google Scholar

[15] C. Shi, P.V. Krivenko, D. Roy, Alkali-activated Cements and Concretes, CRC Press, London, (2003).

DOI: 10.1201/9781482266900

Google Scholar

[16] H. Xu, J. L. Provis, J.S. Van Deventer, et al, Characterization of aged slag concretes, Aci. Mater. J. 105(2008)131-139.

Google Scholar

[17] M. Nedeljkovic, Y. Zuo, K. Arbi, et al, Natural carbonation of alkali-activated fly ash and slag pastes. In: High tech concrete: where technology and engineering meet. Springer, 2018, pp.2213-2223.

DOI: 10.1007/978-3-319-59471-2_253

Google Scholar

[18] A. Adam. Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete. Ph.D. thesis, RMIT University, Melbourne, Australia, (2009).

Google Scholar

[19] W. Aperador, J.H. Bautista, E. Vera, et al, Mössbauer and XRD analysis of corrosion products of carbonated alkali-activated slag reinforced concretes, Dyn. 78(2011)198-203.

Google Scholar

[20] F. Pacheco-Torgal, Handbook of Alkali-activated Cements, Mortars and Concretes, Woodhead Publishing, UK, (2015).

DOI: 10.1533/9781782422884.1

Google Scholar

[21] X. Yu, X. Jiang, et al, Study on reinforced alkali-activated slag mortar carbonation resistance and rebar corrosion, Concr. 11(2015)110-113.

Google Scholar

[22] T.T. He, Study on the carbonation performance of alkali-activated slag. Master's thesis, Southeast university, China, (2018).

Google Scholar

[23] C. Dong, W. Sun, N. Banthia, Use of tomography to understand the influence of precondition -ing on carbonation tests in cement-based materials, Cem. Concr. Compos. 88(2018) 52 -63.

DOI: 10.1016/j.cemconcomp.2018.01.011

Google Scholar

[24] S. Chinchonpaya, C. Andrade, S. Chinchon, et al, Indicator of carbonation front in concrete as substitute to phenolphthalein, Cem. Concr. Res. 82(2016)87-91.

DOI: 10.1016/j.cemconres.2015.12.010

Google Scholar

[25] M. Nedeljkovic, Y.B. Zuo, K. Arbi, et al, New test method for assessing the carbonation front in alkali-activated fly ash/slag pastes, Key. Eng. Mater. 761(2018)148-151.

DOI: 10.4028/www.scientific.net/kem.761.148

Google Scholar

[26] Q. Shen, G. Pan, H. Zhan, Test method to simulate the influence of the interface on the concrete carbonation proces. J. Wuhan. Univ. Technol. 31(2016)594-598.

DOI: 10.1007/s11595-016-1415-7

Google Scholar

[27] S. Wang, K.L. Scrivener, Hydration products of alkali activated slag cement, Cem. Concr. Res. 25(1995)561-571.

DOI: 10.1016/0008-8846(95)00045-e

Google Scholar

[28] C. Shi, P. Xie, Interface between cement paste and quartz sand in alkali-activated slag mortars, Cem. Concr. Res. 28(1998)887-896.

DOI: 10.1016/s0008-8846(98)00050-7

Google Scholar

[29] Y.Z. Chen, X.C. Pu, B.G. Ma, et al, Research on characteristics of hydration and hardening of Na2SO4-slag cement, J. Chin. Ceram. Soc. 28(2000)81-84.

Google Scholar

[30] J. Chen, J.J. Thomas, H. Taylor, et al, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res. 34(2004)1499-1519.

Google Scholar

[31] Z. Shi, C. Shi, S. Wan, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars, Cem. Concr. Res. 113(2018)55-64.

DOI: 10.1016/j.cemconres.2018.07.005

Google Scholar

[32] B. Lothenbach, T. Matschei, G. Moschner, et al, Thermodynamic modelling of the effect of temperature on the hydration and porosity of portland cement, Cem. Concr. Res. 38(2008)1-18.

DOI: 10.1016/j.cemconres.2007.08.017

Google Scholar

[33] D.A. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models, Cem. Concr. Res. 41(2011)477-495.

Google Scholar

[34] J.X. Shan. Study on the durability of alkali-activated slag concrete. Master's thesis, Wuhan university of technology, China, (2015).

Google Scholar

[35] S.A. Bernal, J.L. Provis, D.G. Brice, et al, Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry, Cem. Concr. Res. 42(2012)1317-1326.

DOI: 10.1016/j.cemconres.2012.07.002

Google Scholar

[36] H. Ye, A. Radlinska, Carbonation-induced volume change in alkali-activated slag, Constr. Build. Mater. 144(2017)635-644.

DOI: 10.1016/j.conbuildmat.2017.03.238

Google Scholar

[37] T.T.H. Bach, E. Chabas, I. Pochard, et al, Retention of alkali ions by hydrated low-pH cements: mechanism and Na+/K+ selectivity, Cem. Concr. Res. 51(2013)14-21.

DOI: 10.1016/j.cemconres.2013.04.010

Google Scholar

[38] C.F. Lu. Research on resistance of carbonation of alkali-activated slag cement mortars, Master's thesis, Chongqing University, China, (2009).

Google Scholar

[39] S.A. Bernal, J.L. Provis, R.J. Myers, et al, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct. 48(2015)517-529.

DOI: 10.1617/s11527-014-0412-6

Google Scholar

[40] W.T. Yan, X. Zhang, Y.J. Zhang, Performances and processes of thermal activation of alkali slag cement, Cem. Guide. N. E. 04(2008)21-25.

Google Scholar

[41] K. Behfarnia, M. Rostami. An assessment on parameters affecting the carbonation of alkali-activated slag concrete, J. Clean. Prod. 157(2017)1-9.

DOI: 10.1016/j.jclepro.2017.04.097

Google Scholar

[42] D. W. Law, A.A. Adam, T.K. Molyneaux, et al, Durability assessment of alkali activated slag (AAS) concrete, Mater. Struct. 45(2012)1425-1437.

DOI: 10.1617/s11527-012-9842-1

Google Scholar

[43] J. He, C.H. Yang, Hydration heat evolution and setting performance of alkali-slag cement activated with water glass, J. Civ. Archit. Environ. Eng. 33(2011)147-152.

Google Scholar

[44] O. Burciagadiaz, J.I. Escalantegarcia, R. Arellanoaguilar, et al, Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements, J. Am. Ceram. Soc. 93(2010)541-547.

DOI: 10.1111/j.1551-2916.2009.03414.x

Google Scholar

[45] S.A. Bernal, R.S. Nicolas, J.L. Provis, et al, Natural carbonation of aged alkali-activated slag concretes, Mater. Struct. 47(2014)693-707.

DOI: 10.1617/s11527-013-0089-2

Google Scholar

[46] S.A. Bernal, R.S. Nicolas, R.J. Myers, et al, MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res. 57(2014)33-43.

DOI: 10.1016/j.cemconres.2013.12.003

Google Scholar

[47] O. Burciagadiaz, I. Betancourtcastillo, Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH, Cem. Concr. Res. 113(2018) 54-63.

DOI: 10.1016/j.cemconres.2018.01.002

Google Scholar

[48] A.J. Chen, Y. Yun, J.T. Ma, et al, Structure reconstruction of calcined layered double hydroxides in cement materials and its carbonation analysis, B. Chin. Ceram. Soc. 36(2017) 301- 305+320.

Google Scholar

[49] Z. Ni, G. Pan, L. Wang, et al, Structure and properties of hydrotalcite using electrostatic potential energy model, Chin. J. Chem. Phys. 19(2006)277-280.

Google Scholar

[50] S.M. Park, J.G Jang, H.K. Lee, et al, Unlocking the role of MgO in the carbonation of alkali-activated slag cement, Inorg. Chem. Front. 5(2018)1661-1670.

DOI: 10.1039/c7qi00754j

Google Scholar

[51] M.S. Khan, A. Castel, Effect of MgO and Na2SiO3 on the carbonation resistance of alkali activated slag concrete, Mag. Concrete. Res. 70(2017)685-692.

DOI: 10.1680/jmacr.17.00062

Google Scholar

[52] S.W. Li, Research effect of additive on alkali-active slag concrete, Master's thesis, Chongqing University, China, (2006).

Google Scholar

[53] Y. Su, X.C. Wei, Y.B. Wang, et al, Performance of carbonation resistance and micro-structure of alkali slag and fly ash concrete with polypropylene fiber, B. Chin. Ceram. Soc. 35(2016)1481 -1485.

Google Scholar

[54] G.F. Huseien, M.M. Tahir, J. Mirza, et al, Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars, Constr. Build. Mater. 175(2018)174-186.

DOI: 10.1016/j.conbuildmat.2018.04.166

Google Scholar

[55] W.A. Chaparro, D.M. Bastidas, J.H.B. Ruíz, Mechanical properties and absorption of chlorides in alkali activated slag concrete and exposed to carbonation, Rev. Fac. Ing-Univ. Ant. 55(2012)189 -195.

Google Scholar

[56] S. Ghahramani, Y. Guan, A. Radlinska, et al, Monitoring the carbonation-Induced microcracking in alkali-activated slag (AAS) by nonlinear resonant acoustic spectroscopy (NRAS), Adv. Civil. Eng. Mater. 7(2018)576-598.

DOI: 10.1520/acem20170133

Google Scholar

[57] K. Song, J. Song, B.Y. Lee, et al. Carbonation characteristics of alkali-activated blast-furnace slag mortar, Adv. Mater. Sci. Eng. 3(2015)28-29.

Google Scholar

[58] X.X. Chen, H.L. Cao, L.Q. Weng, et al, Research on carbonation process of alkali-activated cement mortars, J. Wuhan. Univ. Technol. 36(2014)18-22.

Google Scholar

[59] C. Shi, R.L. Day, X. Wu, et al, Comparison of the micro structure and performance of alkali-slag and portland cement pastes, In: Proceedings of the 9th International Congresson the Chemistry of Cement, New Dehli, India. 3(1992)298-304.

Google Scholar

[60] S.A. Bernal, J.L. Provis, R.M. De Gutierrez, et al, Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions, Mater. Struc. 48 (2015)653-669.

DOI: 10.1617/s11527-014-0289-4

Google Scholar

[61] X.X. Pu, C.C. Gan, S.D. Wamg, et al, Summary reports of research on alkali-activated slag cement and concrete, Chongqing. I. Archit. Eng. 10(1988)1-6.

Google Scholar

[62] M. Nedeljkovic, Y. Zuo, K. Arbi, et al, Carbonation resistance of alkali-activated slag under natural and accelerated Conditions, J. Sustain. Metall. 4(2018) 33-49.

DOI: 10.1007/s40831-018-0166-4

Google Scholar

[63] S.A. Bernal, R.M. De Gutierrez, J.L. Provis, et al, Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags, Cem. Concr. Res. 40(2010) 898 -907.

DOI: 10.1016/j.cemconres.2010.02.003

Google Scholar

[64] N. Li, N. Farzadnia, C. Shi, et al, Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation, Cem. Concr. Res. 100(2017)214-226.

DOI: 10.1016/j.cemconres.2017.07.008

Google Scholar

[65] J. He, C.H. Yang, Study on carbonation process of alkali-activated slag cement pastes, J. Huazhong. Univ. Sci. Technol. 5(2011)29-33.

Google Scholar

[66] J. He, T.S. He, C.H. Yang, et al, Influence of carbonation on drying shrinkage of alkali-activated slag cement stone, J. Build. Mater. 2(2015)221-227.

Google Scholar