[1]
A. Fernandezjimenez, J. G. Palomo, F. Puertas, et al, Alkali-activated slag mortars: mechanical strength behavior, Cem. Concr. Res. 29(1999)1313-1321.
DOI: 10.1016/s0008-8846(99)00154-4
Google Scholar
[2]
C. Shi, Strength, pore structure and permeability of alkali-activated slag mortars, Cem. Concr. Res. 26(1996)1789-1799.
DOI: 10.1016/s0008-8846(96)00174-3
Google Scholar
[3]
T. Bakharev, J. G. Sanjayan, Y. Cheng, et al, Sulfate attack on alkali-activated slag concrete, Cem. Concr. Res. 32(2002)211-216.
DOI: 10.1016/s0008-8846(01)00659-7
Google Scholar
[4]
F. Puertas, R. Gutiérrez, A. Fernández-Jiménez, et al, Alkaline cement mortars. chemical resistance to sulfate and seawater attack, Mater. Constr. 52(2002)55-71.
DOI: 10.3989/mc.2002.v52.i267.326
Google Scholar
[5]
T. Bakharev, J. G. Sanjayan, Y. Cheng, et al, Resistance of alkali-activated slag concrete to acid attack, Cem. Concr. Res. 33(2003)1607-1611.
DOI: 10.1016/s0008-8846(03)00125-x
Google Scholar
[6]
D.M. Roy, Alkali-activated cements opportunities and challenges, Cem. Concr. Res. 29(1999) 249-254.
Google Scholar
[7]
J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials, Cem. Concr. Res. 78(2015)110-125.
DOI: 10.1016/j.cemconres.2015.04.013
Google Scholar
[8]
A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-a guide for civil engineer, Constr. Build. Mater. 47(2013)29-55.
DOI: 10.1016/j.conbuildmat.2013.04.011
Google Scholar
[9]
T. Bakharev, J.G. Sanjayan, Y. Cheng, et al, Resistance of alkali-activated slag concrete to carbonation, Cem. Concr. Res. 31(2001)1277-1283.
DOI: 10.1016/s0008-8846(01)00574-9
Google Scholar
[10]
B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cem. Concr. Res. 31(2001)925-931.
DOI: 10.1016/s0008-8846(01)00498-7
Google Scholar
[11]
M.F. Bertos, S.J. Simons, C. Hills, et al, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, J. Hazard. Mater. 112(2004)193-205.
DOI: 10.1016/j.jhazmat.2004.04.019
Google Scholar
[12]
F. Puertas, M. Palacios, T. Vazquez, et al, Carbonation process of alkali-activated slag mortars, J. Mater. Sci. 41(2006)3071-3082.
DOI: 10.1007/s10853-005-1821-2
Google Scholar
[13]
M. Palacios, F. Puertas, Effect of carbonation on alkali-activated slag paste, J. Am. Ceram. Soc. 89(2006)3211-3221.
DOI: 10.1111/j.1551-2916.2006.01214.x
Google Scholar
[14]
J. He. Research on the carbonation behavior and mechanism of hardened alkali-activated slag cement pastes, Master's thesis, Chongqing University, China, (2011).
Google Scholar
[15]
C. Shi, P.V. Krivenko, D. Roy, Alkali-activated Cements and Concretes, CRC Press, London, (2003).
DOI: 10.1201/9781482266900
Google Scholar
[16]
H. Xu, J. L. Provis, J.S. Van Deventer, et al, Characterization of aged slag concretes, Aci. Mater. J. 105(2008)131-139.
Google Scholar
[17]
M. Nedeljkovic, Y. Zuo, K. Arbi, et al, Natural carbonation of alkali-activated fly ash and slag pastes. In: High tech concrete: where technology and engineering meet. Springer, 2018, pp.2213-2223.
DOI: 10.1007/978-3-319-59471-2_253
Google Scholar
[18]
A. Adam. Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete. Ph.D. thesis, RMIT University, Melbourne, Australia, (2009).
Google Scholar
[19]
W. Aperador, J.H. Bautista, E. Vera, et al, Mössbauer and XRD analysis of corrosion products of carbonated alkali-activated slag reinforced concretes, Dyn. 78(2011)198-203.
Google Scholar
[20]
F. Pacheco-Torgal, Handbook of Alkali-activated Cements, Mortars and Concretes, Woodhead Publishing, UK, (2015).
DOI: 10.1533/9781782422884.1
Google Scholar
[21]
X. Yu, X. Jiang, et al, Study on reinforced alkali-activated slag mortar carbonation resistance and rebar corrosion, Concr. 11(2015)110-113.
Google Scholar
[22]
T.T. He, Study on the carbonation performance of alkali-activated slag. Master's thesis, Southeast university, China, (2018).
Google Scholar
[23]
C. Dong, W. Sun, N. Banthia, Use of tomography to understand the influence of precondition -ing on carbonation tests in cement-based materials, Cem. Concr. Compos. 88(2018) 52 -63.
DOI: 10.1016/j.cemconcomp.2018.01.011
Google Scholar
[24]
S. Chinchonpaya, C. Andrade, S. Chinchon, et al, Indicator of carbonation front in concrete as substitute to phenolphthalein, Cem. Concr. Res. 82(2016)87-91.
DOI: 10.1016/j.cemconres.2015.12.010
Google Scholar
[25]
M. Nedeljkovic, Y.B. Zuo, K. Arbi, et al, New test method for assessing the carbonation front in alkali-activated fly ash/slag pastes, Key. Eng. Mater. 761(2018)148-151.
DOI: 10.4028/www.scientific.net/kem.761.148
Google Scholar
[26]
Q. Shen, G. Pan, H. Zhan, Test method to simulate the influence of the interface on the concrete carbonation proces. J. Wuhan. Univ. Technol. 31(2016)594-598.
DOI: 10.1007/s11595-016-1415-7
Google Scholar
[27]
S. Wang, K.L. Scrivener, Hydration products of alkali activated slag cement, Cem. Concr. Res. 25(1995)561-571.
DOI: 10.1016/0008-8846(95)00045-e
Google Scholar
[28]
C. Shi, P. Xie, Interface between cement paste and quartz sand in alkali-activated slag mortars, Cem. Concr. Res. 28(1998)887-896.
DOI: 10.1016/s0008-8846(98)00050-7
Google Scholar
[29]
Y.Z. Chen, X.C. Pu, B.G. Ma, et al, Research on characteristics of hydration and hardening of Na2SO4-slag cement, J. Chin. Ceram. Soc. 28(2000)81-84.
Google Scholar
[30]
J. Chen, J.J. Thomas, H. Taylor, et al, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res. 34(2004)1499-1519.
Google Scholar
[31]
Z. Shi, C. Shi, S. Wan, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars, Cem. Concr. Res. 113(2018)55-64.
DOI: 10.1016/j.cemconres.2018.07.005
Google Scholar
[32]
B. Lothenbach, T. Matschei, G. Moschner, et al, Thermodynamic modelling of the effect of temperature on the hydration and porosity of portland cement, Cem. Concr. Res. 38(2008)1-18.
DOI: 10.1016/j.cemconres.2007.08.017
Google Scholar
[33]
D.A. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models, Cem. Concr. Res. 41(2011)477-495.
Google Scholar
[34]
J.X. Shan. Study on the durability of alkali-activated slag concrete. Master's thesis, Wuhan university of technology, China, (2015).
Google Scholar
[35]
S.A. Bernal, J.L. Provis, D.G. Brice, et al, Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry, Cem. Concr. Res. 42(2012)1317-1326.
DOI: 10.1016/j.cemconres.2012.07.002
Google Scholar
[36]
H. Ye, A. Radlinska, Carbonation-induced volume change in alkali-activated slag, Constr. Build. Mater. 144(2017)635-644.
DOI: 10.1016/j.conbuildmat.2017.03.238
Google Scholar
[37]
T.T.H. Bach, E. Chabas, I. Pochard, et al, Retention of alkali ions by hydrated low-pH cements: mechanism and Na+/K+ selectivity, Cem. Concr. Res. 51(2013)14-21.
DOI: 10.1016/j.cemconres.2013.04.010
Google Scholar
[38]
C.F. Lu. Research on resistance of carbonation of alkali-activated slag cement mortars, Master's thesis, Chongqing University, China, (2009).
Google Scholar
[39]
S.A. Bernal, J.L. Provis, R.J. Myers, et al, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct. 48(2015)517-529.
DOI: 10.1617/s11527-014-0412-6
Google Scholar
[40]
W.T. Yan, X. Zhang, Y.J. Zhang, Performances and processes of thermal activation of alkali slag cement, Cem. Guide. N. E. 04(2008)21-25.
Google Scholar
[41]
K. Behfarnia, M. Rostami. An assessment on parameters affecting the carbonation of alkali-activated slag concrete, J. Clean. Prod. 157(2017)1-9.
DOI: 10.1016/j.jclepro.2017.04.097
Google Scholar
[42]
D. W. Law, A.A. Adam, T.K. Molyneaux, et al, Durability assessment of alkali activated slag (AAS) concrete, Mater. Struct. 45(2012)1425-1437.
DOI: 10.1617/s11527-012-9842-1
Google Scholar
[43]
J. He, C.H. Yang, Hydration heat evolution and setting performance of alkali-slag cement activated with water glass, J. Civ. Archit. Environ. Eng. 33(2011)147-152.
Google Scholar
[44]
O. Burciagadiaz, J.I. Escalantegarcia, R. Arellanoaguilar, et al, Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements, J. Am. Ceram. Soc. 93(2010)541-547.
DOI: 10.1111/j.1551-2916.2009.03414.x
Google Scholar
[45]
S.A. Bernal, R.S. Nicolas, J.L. Provis, et al, Natural carbonation of aged alkali-activated slag concretes, Mater. Struct. 47(2014)693-707.
DOI: 10.1617/s11527-013-0089-2
Google Scholar
[46]
S.A. Bernal, R.S. Nicolas, R.J. Myers, et al, MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res. 57(2014)33-43.
DOI: 10.1016/j.cemconres.2013.12.003
Google Scholar
[47]
O. Burciagadiaz, I. Betancourtcastillo, Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH, Cem. Concr. Res. 113(2018) 54-63.
DOI: 10.1016/j.cemconres.2018.01.002
Google Scholar
[48]
A.J. Chen, Y. Yun, J.T. Ma, et al, Structure reconstruction of calcined layered double hydroxides in cement materials and its carbonation analysis, B. Chin. Ceram. Soc. 36(2017) 301- 305+320.
Google Scholar
[49]
Z. Ni, G. Pan, L. Wang, et al, Structure and properties of hydrotalcite using electrostatic potential energy model, Chin. J. Chem. Phys. 19(2006)277-280.
Google Scholar
[50]
S.M. Park, J.G Jang, H.K. Lee, et al, Unlocking the role of MgO in the carbonation of alkali-activated slag cement, Inorg. Chem. Front. 5(2018)1661-1670.
DOI: 10.1039/c7qi00754j
Google Scholar
[51]
M.S. Khan, A. Castel, Effect of MgO and Na2SiO3 on the carbonation resistance of alkali activated slag concrete, Mag. Concrete. Res. 70(2017)685-692.
DOI: 10.1680/jmacr.17.00062
Google Scholar
[52]
S.W. Li, Research effect of additive on alkali-active slag concrete, Master's thesis, Chongqing University, China, (2006).
Google Scholar
[53]
Y. Su, X.C. Wei, Y.B. Wang, et al, Performance of carbonation resistance and micro-structure of alkali slag and fly ash concrete with polypropylene fiber, B. Chin. Ceram. Soc. 35(2016)1481 -1485.
Google Scholar
[54]
G.F. Huseien, M.M. Tahir, J. Mirza, et al, Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars, Constr. Build. Mater. 175(2018)174-186.
DOI: 10.1016/j.conbuildmat.2018.04.166
Google Scholar
[55]
W.A. Chaparro, D.M. Bastidas, J.H.B. Ruíz, Mechanical properties and absorption of chlorides in alkali activated slag concrete and exposed to carbonation, Rev. Fac. Ing-Univ. Ant. 55(2012)189 -195.
Google Scholar
[56]
S. Ghahramani, Y. Guan, A. Radlinska, et al, Monitoring the carbonation-Induced microcracking in alkali-activated slag (AAS) by nonlinear resonant acoustic spectroscopy (NRAS), Adv. Civil. Eng. Mater. 7(2018)576-598.
DOI: 10.1520/acem20170133
Google Scholar
[57]
K. Song, J. Song, B.Y. Lee, et al. Carbonation characteristics of alkali-activated blast-furnace slag mortar, Adv. Mater. Sci. Eng. 3(2015)28-29.
Google Scholar
[58]
X.X. Chen, H.L. Cao, L.Q. Weng, et al, Research on carbonation process of alkali-activated cement mortars, J. Wuhan. Univ. Technol. 36(2014)18-22.
Google Scholar
[59]
C. Shi, R.L. Day, X. Wu, et al, Comparison of the micro structure and performance of alkali-slag and portland cement pastes, In: Proceedings of the 9th International Congresson the Chemistry of Cement, New Dehli, India. 3(1992)298-304.
Google Scholar
[60]
S.A. Bernal, J.L. Provis, R.M. De Gutierrez, et al, Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions, Mater. Struc. 48 (2015)653-669.
DOI: 10.1617/s11527-014-0289-4
Google Scholar
[61]
X.X. Pu, C.C. Gan, S.D. Wamg, et al, Summary reports of research on alkali-activated slag cement and concrete, Chongqing. I. Archit. Eng. 10(1988)1-6.
Google Scholar
[62]
M. Nedeljkovic, Y. Zuo, K. Arbi, et al, Carbonation resistance of alkali-activated slag under natural and accelerated Conditions, J. Sustain. Metall. 4(2018) 33-49.
DOI: 10.1007/s40831-018-0166-4
Google Scholar
[63]
S.A. Bernal, R.M. De Gutierrez, J.L. Provis, et al, Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags, Cem. Concr. Res. 40(2010) 898 -907.
DOI: 10.1016/j.cemconres.2010.02.003
Google Scholar
[64]
N. Li, N. Farzadnia, C. Shi, et al, Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation, Cem. Concr. Res. 100(2017)214-226.
DOI: 10.1016/j.cemconres.2017.07.008
Google Scholar
[65]
J. He, C.H. Yang, Study on carbonation process of alkali-activated slag cement pastes, J. Huazhong. Univ. Sci. Technol. 5(2011)29-33.
Google Scholar
[66]
J. He, T.S. He, C.H. Yang, et al, Influence of carbonation on drying shrinkage of alkali-activated slag cement stone, J. Build. Mater. 2(2015)221-227.
Google Scholar