[1]
M. Izquierdo, X. Querol, J. Davidovits, et al., Coal fly ash-slag-based geopolymers: Microstructure and metal leaching, J Hazard Mater 166(1) (2009) 561-6.
DOI: 10.1016/j.jhazmat.2008.11.063
Google Scholar
[2]
A. Rahimizadeh, J. Kalman, K. Fayazbakhsh, et al., Recycling of fiberglass wind turbine blades into reinforced filaments for use in additive manufacturing, Compos. B. Eng. 175 (2019) 107101.
DOI: 10.1016/j.compositesb.2019.107101
Google Scholar
[3]
Y.C. Feng, F.Q. Zhao, H. Xu, Recycling and utilization of waste glass fiber reinforced plastics, Matec Web Conf 67 (2016).
DOI: 10.1051/matecconf/20166707012
Google Scholar
[4]
C.B. Farinha, J. De Brito, R. Veiga, Assessment of glass fibre reinforced polymer waste reuse as filler in mortars, J. Clean. Prod. 210 (2019) 1579-1594.
DOI: 10.1016/j.jclepro.2018.11.080
Google Scholar
[5]
E. Arioz, O. Arioz, O.M. Kockar, Leaching of f-type fly ash based geopolymers, Procedia Engineering 42 (2012) 1114-1120.
DOI: 10.1016/j.proeng.2012.07.503
Google Scholar
[6]
S. Ahmari, L. Zhang, Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater. 44 (2013) 743-750.
DOI: 10.1016/j.conbuildmat.2013.03.075
Google Scholar
[7]
J. Zhou, X. Chen, L. Wu, et al., Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate, Sadhana 36(3) (2011) 357-369.
DOI: 10.1007/s12046-011-0024-6
Google Scholar
[8]
X. Chen, W. Huang, J. Zhou, Effect of moisture content on compressive and split tensile strength of concrete, Indian. J. Eng. Mater. S. 19(6) (2012) 427-435.
Google Scholar
[9]
P.R. Souza, C.S. Nunes, A.R. Freitas, et al., Sub- and supercritical d-limonene technology as a green process to recover glass fibres from glass fibre-reinforced polyester composites, J. Clean. Prod. 254 (2020) 119984.
DOI: 10.1016/j.jclepro.2020.119984
Google Scholar
[10]
M.K. Hagnell, M. kermo, The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials, J. Clean. Prod. 223 (2019) 957-968.
DOI: 10.1016/j.jclepro.2019.03.156
Google Scholar
[11]
D.S. Cousins, Y. Suzuki, R.E. Murray, et al., Recycling glass fiber thermoplastic composites from wind turbine blades, J. Clean. Prod. 209 (2019) 1252-1263.
DOI: 10.1016/j.jclepro.2018.10.286
Google Scholar
[12]
G. Oliveux, L.O. Dandy, G.A. Leeke, Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties, Progress in Materials Science 72 (2015) 61-99.
DOI: 10.1016/j.pmatsci.2015.01.004
Google Scholar
[13]
J.R. Correia, N.M. Almeida, J.R. Figueira, Recycling of frp composites: Reusing fine gfrp waste in concrete mixtures, J. Clean. Prod. 19(15) (2011) 1745-1753.
DOI: 10.1016/j.jclepro.2011.05.018
Google Scholar
[14]
E. Clark, M. Bleszynski, F. Valdez, et al., Recycling carbon and glass fiber polymer matrix composite waste into cementitious materials, Resour. Conserv. Recycl. 155 (2020) 104659.
DOI: 10.1016/j.resconrec.2019.104659
Google Scholar
[15]
P. Asokan, M. Osmani, A.D.F. Price, Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites, Journal of Cleaner Production 17(9) (2009) 821-829.
DOI: 10.1016/j.jclepro.2008.12.004
Google Scholar
[16]
P. Asokan, M. Osmani, A.D.F. Price, Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete, Constr. Build. Mater. 24(4) (2010) 448-460.
DOI: 10.1016/j.conbuildmat.2009.10.017
Google Scholar
[17]
H. Rodin, S. Nassiri, K. Englund, et al., Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance, Constr. Build. Mater. 187 (2018) 738-751.
DOI: 10.1016/j.conbuildmat.2018.07.169
Google Scholar
[18]
R.M. Novais, J. Carvalheiras, M.N. Capela, et al., Incorporation of glass fibre fabrics waste into geopolymer matrices: An eco-friendly solution for off-cuts coming from wind turbine blade production, Constr. Build. Mater. 187 (2018) 876-883.
DOI: 10.1016/j.conbuildmat.2018.08.004
Google Scholar
[19]
M.C.S. Ribeiro, A.C. Meira-Castro, F.G. Silva, et al., Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding gfrp pultrusion wastes, Resour. Conserv. Recycl. 104 (2015) 417-426.
DOI: 10.1016/j.resconrec.2013.10.001
Google Scholar
[20]
A. Dehghan, K. Peterson, A. Shvarzman, Recycled glass fiber reinforced polymer additions to portland cement concrete, Constr. Build. Mater. 146 (2017) 238-250.
DOI: 10.1016/j.conbuildmat.2017.04.011
Google Scholar
[21]
N. Sebaibi, M. Benzerzour, N.E. Abriak, Influence of the distribution and orientation of fibres in a reinforced concrete with waste fibres and powders, Constr. Build. Mater. 65 (2014) 254-263.
DOI: 10.1016/j.conbuildmat.2014.04.134
Google Scholar
[22]
R.M. Novais, J. Carvalheiras, M.P. Seabra, et al., Effective mechanical reinforcement of inorganic polymers using glass fibre waste, J. Clean. Prod. 166 (2017) 343-349.
DOI: 10.1016/j.jclepro.2017.07.242
Google Scholar
[23]
D. García, I. Vegas, I. Cacho, Mechanical recycling of gfrp waste as short-fiber reinforcements in microconcrete, Constr. Build. Mater. 64 (2014) 293-300.
DOI: 10.1016/j.conbuildmat.2014.02.068
Google Scholar
[24]
F. Tittarelli, Effect of low dosages of waste grp dust on fresh and hardened properties of mortars: Part 2, Constr. Build. Mater. 47 (2013) 1539-1543.
DOI: 10.1016/j.conbuildmat.2013.06.086
Google Scholar
[25]
F. Tittarelli, S.P. Shah, Effect of low dosages of waste grp dust on fresh and hardened properties of mortars: Part 1, Constr. Build. Mater. 47 (2013) 1532-1538.
DOI: 10.1016/j.conbuildmat.2013.06.043
Google Scholar