[1]
M. Iten, S. Liu, A. Shukla, A review on the air-PCM-TES application for free cooling and heating in the buildings, Renew. Sust. Energ. Rev. 61(2016) 175-186.
DOI: 10.1016/j.rser.2016.03.007
Google Scholar
[2]
W M. Nazi, Y. Wang, Chen H, et al, Passive cooling using phase change material and insulation for High-rise office building in tropical climate, Energ. Procedia, 142(2017)2295-2302.
DOI: 10.1016/j.egypro.2017.12.632
Google Scholar
[3]
C. Fabiani, A L. Pisello, Coupling the transient plane source method with a dynamically controlled environment to study PCM-doped Sustainable Cities and Society building materials, Appl. Therm. Eng. 130(2018)254-263.
DOI: 10.1016/j.enbuild.2018.09.008
Google Scholar
[4]
X. Kong, S. Lu, Y. Li, et al, Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application, Energy Build. 81 (2014) 404-415.
DOI: 10.1016/j.enbuild.2014.06.044
Google Scholar
[5]
Y.R. Li, W.J. Liang, Z. Jing, et al, Experimental study on thermal performance improvement of building envelopes integrated with phase change materials in an Air-conditioned room, Procedia Eng. 205(2017) 190-197.
DOI: 10.1016/j.proeng.2017.09.952
Google Scholar
[6]
J. Lei, J. Yang, E.H. Yang, Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Appl. Energ. 162 (2016) 207-217.
DOI: 10.1016/j.apenergy.2015.10.031
Google Scholar
[7]
C. Fan, Y. Ding, Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model, Energy Build. 197(2019) 7-17.
DOI: 10.1016/j.enbuild.2019.05.043
Google Scholar
[8]
X. Guo, S. Zhang, J. Cao, An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material, Compos Part A: Appl. Sci. Manufac. 107 (2018) 83-93.
DOI: 10.1016/j.compositesa.2017.12.032
Google Scholar
[9]
M. Auzeby, S. Wei, C. Underwood, et al, Using phase change materials to reduce overheating issues in UK residential buildings, Energ. Procedia.105(2017) 4072-4077.
DOI: 10.1016/j.egypro.2017.03.861
Google Scholar
[10]
Z.X. Li, A.A. Al-Rashed, M. Rostamzadeh, et al, Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM, Energ. Convers. Manage.195 (2019) 43-56.
DOI: 10.1016/j.enconman.2019.04.075
Google Scholar
[11]
Y. Tian, J.J. Gao, X.H. Xu, et al, Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal, Int. J. Therm. Sci. 144(2019) 27 - 41.
DOI: 10.1016/j.ijthermalsci.2019.05.015
Google Scholar
[12]
Y. Zhang, E.S. Long, Y.R. Li, et al. Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving, Energ. Explor. Exploit. 35(2017) 748-766.
DOI: 10.1177/0144598717716285
Google Scholar
[13]
H. Wang, H. Wu, Y. Ding, et al, Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates, Int. J. Low-Carbon Tec. 10(2014) 412-419.
DOI: 10.1093/ijlct/ctu010
Google Scholar
[14]
X. Shi, S.A. Memon, W. Tang, et al, Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels, Energ. Build. 71(2014) 80-87.
DOI: 10.1016/j.enbuild.2013.12.001
Google Scholar
[15]
S. Ramakrishnan, X. Wang, J. Sanjayan, et al. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage, Mater. Lett. 192(2017) 88-91.
DOI: 10.1016/j.matlet.2016.12.052
Google Scholar
[16]
M. Kheradmand, C.G. João, D. P. Silva, et al, Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems, Constr. Build. Mater. 89(2015) 48-59.
DOI: 10.1016/j.conbuildmat.2015.04.031
Google Scholar
[17]
E. Solgi, R. Fayaz, B.M, Kari, Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation, Renew. Energ. 85(2016)725-731.
DOI: 10.1016/j.renene.2015.07.028
Google Scholar
[18]
A, Kasaeian, L. Bahrami, F. Pourfayaz, et al, Experimental studies on the applications of PCMS and Nano-PCMs in buildings: a critical review, Energy Build. 154(2017) 96-112.
DOI: 10.1016/j.enbuild.2017.08.037
Google Scholar
[19]
Y. Lin, Y. Jia, G. Alva, et al, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sust. Energ. Rev. 82(2018)2730-2742.
DOI: 10.1016/j.rser.2017.10.002
Google Scholar
[20]
Z. Zhang, N. Zhang, J. Peng, et al, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl. Energ. 91(2012)426-431.
DOI: 10.1016/j.apenergy.2011.10.014
Google Scholar
[21]
L.F., Cabeza, C. Castellón, N. Miquel, et al, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build. 39(2007) 113-119.
DOI: 10.1016/j.enbuild.2006.03.030
Google Scholar
[22]
Y.R. Lia, J. Zhou, E.S, Long, et al, Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room, Sustain. Cities Soc. 38(2018) 607-615.
DOI: 10.1016/j.scs.2018.01.040
Google Scholar
[23]
D. Zhou, Y. Tian, Y. Qu, et al. Thermal analysis of phase change material board (PCMB) under weather conditions in the summer, Appl. Therm. Eng. 99(2016) 690-702.
DOI: 10.1016/j.applthermaleng.2016.01.121
Google Scholar
[24]
L. Derradji, A. Hamid, B. Zeghmati, et al, Experimental study on the use of microencapsulated phase change material in walls and roofs for energy savings, J. Energ. Eng. 141(2015)04014046.
DOI: 10.1061/(asce)ey.1943-7897.0000238
Google Scholar
[25]
T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: An overview, Constr. Build. Mater. 46(2013) 55-62. https://doi.org/10.1016/j.conbuildmat.2013.04.031.
DOI: 10.1016/j.conbuildmat.2013.04.031
Google Scholar
[26]
Y.H. Qiao, L. Yang, J.Y. Bao, et al. Reduced-scale experiments on the thermal performance of phase change material wallboard in different climate conditions, Build. Environ. 160(2019)106191. https://doi.org/10.1016/j.buildenv.2019.106191.
DOI: 10.1016/j.buildenv.2019.106191
Google Scholar
[27]
M. Vautherot, F. Maréchal, M.M. Farid, Analysis of energy requirements versus comfort levels for the integration of phase change materials in buildings, J. Build. Eng. 1(2015)53-62.
DOI: 10.1016/j.jobe.2015.03.003
Google Scholar
[28]
R.K. Sharma, P. Ganesan, V.V. Tyagi, et al, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energ. Convers. Manage. 95(2015)193-228. https://doi.org/10.1016/j.enconman.2015.01.084.
DOI: 10.1016/j.enconman.2015.01.084
Google Scholar
[29]
R. Ye, W. Lin, K. Yuan, et al, Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material, Appl. Energ. 193(2017)325-335.
DOI: 10.1016/j.apenergy.2017.02.049
Google Scholar
[30]
G. Li, B. Zhang, X. Li, et al, The preparation, characterization and modification of a new phase change material: CaCl2· 6H2O–MgCl2· 6H2O eutectic hydrate salt, Sol. Energ. Mat. Sol. C.126 (2014) 51-55.
DOI: 10.1016/j.solmat.2014.03.031
Google Scholar
[31]
M.S. Mert, H.H. Mert, C.Y. Gumus. Preparation and characterization of paraffin microcapsules for energy‐saving applications, J. Appl. Polym. Sci. 136(2019) 47874.
DOI: 10.1002/app.47874
Google Scholar
[32]
C. Li, H. Yu, Y. Song, et al, Experimental thermal performance of wallboard with hybrid microencapsulated phase change materials for building application, J. Build. Eng. 28(2019)101051. https://doi.org/10.1016/j.jobe.2019.101051.
DOI: 10.1016/j.jobe.2019.101051
Google Scholar
[33]
Y.R. Da, W.Z. Lin, X.M, Fang. et al, A numerical study of building integrated with CaCl2▪6H2O/expanded graphite composite phase change material, Appl. Therm. Eng. 126(2017) 480-488.
DOI: 10.1016/j.applthermaleng.2017.07.191
Google Scholar
[34]
L. Liu, J. Chen, Y. Qu, et al, A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material, Sol. Energ. Mater Sol. C. 200(2019)110038.
DOI: 10.1016/j.solmat.2019.110038
Google Scholar
[35]
Costanzo V, Evola G, Marletta L, et al, The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings, Build. Sim. 11(2018)1145-1161.
DOI: 10.1007/s12273-018-0468-2
Google Scholar
[36]
B. Lu, J.C. Xie, M.F. Mohammed, et al, Analytical model to study the heat storage of phase change material envelopes in lightweight passive buildings, Build. Environ. 169(2020) 106531.
DOI: 10.1016/j.buildenv.2019.106531
Google Scholar
[37]
R. Ji, Z. Zou, M. Chen, et al. Numerical assessing energy performance for building envelopes with phase change material, Int. J. Energy. Res. 2018. https://doi.org/10.1002/er.4293.
DOI: 10.1002/er.4293
Google Scholar
[38]
F. Cheng, R. Wen, Z. Huang, et al, Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage, Appl. Therm. Eng.120 (2017) 107-114. https://doi.org/10.1016/j.applthermaleng.2017.03.129.
DOI: 10.1016/j.applthermaleng.2017.03.129
Google Scholar