Preparation and Analysis of External Walls with the Phase Change Facing Tile for Energy Savings

Article Preview

Abstract:

The external surface of the building envelope absorbs large amounts of heat after long periods of solar radiation especially in the hot summer, leading to a dramatic increase in the cooling load and energy consumption. Phase change material (PCM) possesses the ability to reduce building energy consumption and improve thermal comfort when it is integrated with the building envelope. In this study, paraffin /expanded graphite (EG) composite phase change material was prepared to fabricate facing tile for building envelopes, with phase change facing tile (PCMT) attached to exterior walls and roofs. To present the full role played by the paraffin/ expanded graphite composite phase change material, microstructure, thermal and physical properties characteristics were investigated, thermal performance experiment of facing tile was carried out. The results showed that the maximum inner surface temperature difference between the PCMT and the ceramic tile reached 2.5°C, the maximum temperature time lag was 51 min. A simulation in EnergyPlus was used to evaluate the availability of using PCM to improve the energy efficiency of the building under the Guangzhou climate. The results showed that 2.65% energy savings were achieved. These results showed that PCM has thermal insulation performance, which would affect the indoor temperature and reduce building energy consumption to some extent.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

445-458

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Iten, S. Liu, A. Shukla, A review on the air-PCM-TES application for free cooling and heating in the buildings, Renew. Sust. Energ. Rev. 61(2016) 175-186.

DOI: 10.1016/j.rser.2016.03.007

Google Scholar

[2] W M. Nazi, Y. Wang, Chen H, et al, Passive cooling using phase change material and insulation for High-rise office building in tropical climate, Energ. Procedia, 142(2017)2295-2302.

DOI: 10.1016/j.egypro.2017.12.632

Google Scholar

[3] C. Fabiani, A L. Pisello, Coupling the transient plane source method with a dynamically controlled environment to study PCM-doped Sustainable Cities and Society building materials, Appl. Therm. Eng. 130(2018)254-263.

DOI: 10.1016/j.enbuild.2018.09.008

Google Scholar

[4] X. Kong, S. Lu, Y. Li, et al, Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application, Energy Build. 81 (2014) 404-415.

DOI: 10.1016/j.enbuild.2014.06.044

Google Scholar

[5] Y.R. Li, W.J. Liang, Z. Jing, et al, Experimental study on thermal performance improvement of building envelopes integrated with phase change materials in an Air-conditioned room, Procedia Eng. 205(2017) 190-197.

DOI: 10.1016/j.proeng.2017.09.952

Google Scholar

[6] J. Lei, J. Yang, E.H. Yang, Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Appl. Energ. 162 (2016) 207-217.

DOI: 10.1016/j.apenergy.2015.10.031

Google Scholar

[7] C. Fan, Y. Ding, Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model, Energy Build. 197(2019) 7-17.

DOI: 10.1016/j.enbuild.2019.05.043

Google Scholar

[8] X. Guo, S. Zhang, J. Cao, An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material, Compos Part A: Appl. Sci. Manufac. 107 (2018) 83-93.

DOI: 10.1016/j.compositesa.2017.12.032

Google Scholar

[9] M. Auzeby, S. Wei, C. Underwood, et al, Using phase change materials to reduce overheating issues in UK residential buildings, Energ. Procedia.105(2017) 4072-4077.

DOI: 10.1016/j.egypro.2017.03.861

Google Scholar

[10] Z.X. Li, A.A. Al-Rashed, M. Rostamzadeh, et al, Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM, Energ. Convers. Manage.195 (2019) 43-56.

DOI: 10.1016/j.enconman.2019.04.075

Google Scholar

[11] Y. Tian, J.J. Gao, X.H. Xu, et al, Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal, Int. J. Therm. Sci. 144(2019) 27 - 41.

DOI: 10.1016/j.ijthermalsci.2019.05.015

Google Scholar

[12] Y. Zhang, E.S. Long, Y.R. Li, et al. Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving, Energ. Explor. Exploit. 35(2017) 748-766.

DOI: 10.1177/0144598717716285

Google Scholar

[13] H. Wang, H. Wu, Y. Ding, et al, Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates, Int. J. Low-Carbon Tec. 10(2014) 412-419.

DOI: 10.1093/ijlct/ctu010

Google Scholar

[14] X. Shi, S.A. Memon, W. Tang, et al, Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels, Energ. Build. 71(2014) 80-87.

DOI: 10.1016/j.enbuild.2013.12.001

Google Scholar

[15] S. Ramakrishnan, X. Wang, J. Sanjayan, et al. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage, Mater. Lett. 192(2017) 88-91.

DOI: 10.1016/j.matlet.2016.12.052

Google Scholar

[16] M. Kheradmand, C.G. João, D. P. Silva, et al, Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems, Constr. Build. Mater. 89(2015) 48-59.

DOI: 10.1016/j.conbuildmat.2015.04.031

Google Scholar

[17] E. Solgi, R. Fayaz, B.M, Kari, Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation, Renew. Energ. 85(2016)725-731.

DOI: 10.1016/j.renene.2015.07.028

Google Scholar

[18] A, Kasaeian, L. Bahrami, F. Pourfayaz, et al, Experimental studies on the applications of PCMS and Nano-PCMs in buildings: a critical review, Energy Build. 154(2017) 96-112.

DOI: 10.1016/j.enbuild.2017.08.037

Google Scholar

[19] Y. Lin, Y. Jia, G. Alva, et al, Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sust. Energ. Rev. 82(2018)2730-2742.

DOI: 10.1016/j.rser.2017.10.002

Google Scholar

[20] Z. Zhang, N. Zhang, J. Peng, et al, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl. Energ. 91(2012)426-431.

DOI: 10.1016/j.apenergy.2011.10.014

Google Scholar

[21] L.F., Cabeza, C. Castellón, N. Miquel, et al, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build. 39(2007) 113-119.

DOI: 10.1016/j.enbuild.2006.03.030

Google Scholar

[22] Y.R. Lia, J. Zhou, E.S, Long, et al, Experimental study on thermal performance improvement of building envelopes by integrating with phase change material in an intermittently heated room, Sustain. Cities Soc. 38(2018) 607-615.

DOI: 10.1016/j.scs.2018.01.040

Google Scholar

[23] D. Zhou, Y. Tian, Y. Qu, et al. Thermal analysis of phase change material board (PCMB) under weather conditions in the summer, Appl. Therm. Eng. 99(2016) 690-702.

DOI: 10.1016/j.applthermaleng.2016.01.121

Google Scholar

[24] L. Derradji, A. Hamid, B. Zeghmati, et al, Experimental study on the use of microencapsulated phase change material in walls and roofs for energy savings, J. Energ. Eng. 141(2015)04014046.

DOI: 10.1061/(asce)ey.1943-7897.0000238

Google Scholar

[25] T.C. Ling, C.S. Poon, Use of phase change materials for thermal energy storage in concrete: An overview, Constr. Build. Mater. 46(2013) 55-62. https://doi.org/10.1016/j.conbuildmat.2013.04.031.

DOI: 10.1016/j.conbuildmat.2013.04.031

Google Scholar

[26] Y.H. Qiao, L. Yang, J.Y. Bao, et al. Reduced-scale experiments on the thermal performance of phase change material wallboard in different climate conditions, Build. Environ. 160(2019)106191. https://doi.org/10.1016/j.buildenv.2019.106191.

DOI: 10.1016/j.buildenv.2019.106191

Google Scholar

[27] M. Vautherot, F. Maréchal, M.M. Farid, Analysis of energy requirements versus comfort levels for the integration of phase change materials in buildings, J. Build. Eng. 1(2015)53-62.

DOI: 10.1016/j.jobe.2015.03.003

Google Scholar

[28] R.K. Sharma, P. Ganesan, V.V. Tyagi, et al, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energ. Convers. Manage. 95(2015)193-228. https://doi.org/10.1016/j.enconman.2015.01.084.

DOI: 10.1016/j.enconman.2015.01.084

Google Scholar

[29] R. Ye, W. Lin, K. Yuan, et al, Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material, Appl. Energ. 193(2017)325-335.

DOI: 10.1016/j.apenergy.2017.02.049

Google Scholar

[30] G. Li, B. Zhang, X. Li, et al, The preparation, characterization and modification of a new phase change material: CaCl2· 6H2O–MgCl2· 6H2O eutectic hydrate salt, Sol. Energ. Mat. Sol. C.126 (2014) 51-55.

DOI: 10.1016/j.solmat.2014.03.031

Google Scholar

[31] M.S. Mert, H.H. Mert, C.Y. Gumus. Preparation and characterization of paraffin microcapsules for energy‐saving applications, J. Appl. Polym. Sci. 136(2019) 47874.

DOI: 10.1002/app.47874

Google Scholar

[32] C. Li, H. Yu, Y. Song, et al, Experimental thermal performance of wallboard with hybrid microencapsulated phase change materials for building application, J. Build. Eng. 28(2019)101051. https://doi.org/10.1016/j.jobe.2019.101051.

DOI: 10.1016/j.jobe.2019.101051

Google Scholar

[33] Y.R. Da, W.Z. Lin, X.M, Fang. et al, A numerical study of building integrated with CaCl2▪6H2O/expanded graphite composite phase change material, Appl. Therm. Eng. 126(2017) 480-488.

DOI: 10.1016/j.applthermaleng.2017.07.191

Google Scholar

[34] L. Liu, J. Chen, Y. Qu, et al, A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material, Sol. Energ. Mater Sol. C. 200(2019)110038.

DOI: 10.1016/j.solmat.2019.110038

Google Scholar

[35] Costanzo V, Evola G, Marletta L, et al, The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings, Build. Sim. 11(2018)1145-1161.

DOI: 10.1007/s12273-018-0468-2

Google Scholar

[36] B. Lu, J.C. Xie, M.F. Mohammed, et al, Analytical model to study the heat storage of phase change material envelopes in lightweight passive buildings, Build. Environ. 169(2020) 106531.

DOI: 10.1016/j.buildenv.2019.106531

Google Scholar

[37] R. Ji, Z. Zou, M. Chen, et al. Numerical assessing energy performance for building envelopes with phase change material, Int. J. Energy. Res. 2018. https://doi.org/10.1002/er.4293.

DOI: 10.1002/er.4293

Google Scholar

[38] F. Cheng, R. Wen, Z. Huang, et al, Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage, Appl. Therm. Eng.120 (2017) 107-114. https://doi.org/10.1016/j.applthermaleng.2017.03.129.

DOI: 10.1016/j.applthermaleng.2017.03.129

Google Scholar