[1]
W.X. Xu, H.S. Chen, Effects of particle size distribution, shape and volume fraction of aggregates on the wall effect of concrete via random sequential packing of polydispersed ellipsoidal particles, Phys. A 392(2013)416-426.
DOI: 10.1016/j.physa.2012.09.014
Google Scholar
[2]
S. Syrbe, H. Kuhrt, U. Gärtner, et al, Müller glial cells of the primate foveola: An electron microscopical study, Exp. Eye Res. 167(2018)110-117.
DOI: 10.1016/j.exer.2017.12.004
Google Scholar
[3]
K.L. Scrivener, H.H. Patel, P.L. Pratt, et al, Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis, Microstructural Development During the Hydration of Cement, Proc. Mater. Res. Soc. Symp. 85(1987)67-76.
DOI: 10.1557/proc-85-67
Google Scholar
[4]
K.L. Scrivener, The microstructure of concrete in: Skalny J., Mindess S. (eds.) Materials Science of Concrete I, Westerville, American Ceramic Society (1989)127-161.
Google Scholar
[5]
J.P. Ollivier, J.C. Maso and B. Bourdette, Interfacial Transition Zone in Concrete, Adv. Cem. Based Mater. 2(1995)30-38.
DOI: 10.1016/1065-7355(95)90037-3
Google Scholar
[6]
D.P. Bentz, E.J. Garboczi, P.E. Stutzman, Computer modelling of the interfacial transition zone in concrete, in: J.C. Maso (Ed.), Interfaces in Cementitious Composites, E. and F.N. Spon, London, 1993, pp.259-268.
Google Scholar
[7]
J.J. Zheng, C.Q. Li, X.Z. Zhou, Thickness of interfacial transition zone and cement content profiles around aggregate, Mag. Concr. Res. 57(2005)397-406.
DOI: 10.1680/macr.2005.57.7.397
Google Scholar
[8]
J.J. Lin, H.S. Chen, R.L. Zhang, et al, Characterization of the wall effect of concrete via random packing of polydispersed superball-shaped aggregates. Mater. Charact. 154(2019)335-343.
DOI: 10.1016/j.matchar.2019.06.024
Google Scholar
[9]
M.Q. Li, H.S. Chen, J.J. Lin, et al, The bias of the interface thickness and diffusivity of concrete comprising Platonic aggregates induced by areal analysis, Powder Technol. 376(2020)209-221.
DOI: 10.1016/j.powtec.2020.08.024
Google Scholar
[10]
M.Q. Li, H.S. Chen, J.J. Lin, et al, Areal analysis induced bias on interface thickness around ovoidal particles, Constr. Build. Mater. 262(2020)120583.
DOI: 10.1016/j.conbuildmat.2020.120583
Google Scholar
[11]
Z.G. Zhu, H.S. Chen, Aggregate shape effect on the overestimation of interface thickness for spheroidal particles, Powder Technol. 313(2017)218-230.
DOI: 10.1016/j.powtec.2017.03.014
Google Scholar
[12]
H.S. Chen, Z.G. Zhu, L. Liu, et al, Aggregate shape effect on the overestimation of ITZ thickness: Quantitative analysis of Platonic particles, Powder Technol. 289(2016)1-17.
DOI: 10.1016/j.powtec.2015.11.036
Google Scholar
[13]
S. Kamali-Bernard, F. Bernard, W. Prince, Computer modelling of tritiated water diffusion test for cement based materials, Comput. Mater. Sci. 45(2009)528-535.
DOI: 10.1016/j.commatsci.2008.11.018
Google Scholar
[14]
Z.G. Zhu, W.X. Xu. H.S. Chen, The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models, Comput. Methods Appl. Mech. Engrg. 345(2019)728-747.
DOI: 10.1016/j.cma.2018.11.022
Google Scholar