Residual Stresses Determination near FSW Joints by Combining the Hole Drilling Method and Reflection Hologram Interferometry

Article Preview

Abstract:

The results of residual stress characterization near friction stir welded (FSW) butt joint of aluminum plates are reported. The experimental analysis employs two-side measurements of local deformation response on small hole drilling by reflection hologram interferometry. The approach developed is based on the unequivocally solution of the properly posed inverse problem thus deriving both membrane and bending residual stress components. Residual stress components of high level are derived inside the tool shoulder borders on both specimen faces.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

251-257

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Sutton, A.P. Reynolds, Y.Z. Ge, X. Deng, Limited weld residual stress measurements in fatigue crack propagation: Part II. FEM-based fatigue crack propagation with complete residual stress fields, Fatigue & Fracture of Eng. Mat. & Str. 29 (2006) 537–545.

DOI: 10.1111/j.1460-2695.2006.01023.x

Google Scholar

[2] T. Ghidini, C. Dalle Donne. Fatigue crack propagation assessment based on residual stresses obtained through cut-compliance technique, Fatigue & Fracture of Eng. Mat. & Str. 30 (2007) 214–222.

DOI: 10.1111/j.1460-2695.2006.01059.x

Google Scholar

[3] M.T. Milan, W.W. Bose Filho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behavior of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue & Fracture of Eng. Mat. & Str. 31 (2008) 526-538.

DOI: 10.1111/j.1460-2695.2008.01234.x

Google Scholar

[4] S. Pasta, A. P. Reynolds, Evaluation of Residual Stresses During Fatigue Test in an FSW Joint, Strain. 44 (2008) 147–152.

DOI: 10.1111/j.1475-1305.2007.00358.x

Google Scholar

[5] G. Pouget, A.P. Reynolds,. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds alloys. Int. J. of Fatigue. 30 (2008) 463–472.

DOI: 10.1016/j.ijfatigue.2007.04.016

Google Scholar

[6] L. Fratini, S. Pasta, A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects, Int. J. of Fatigue. 31 (2009) 495–500.

DOI: 10.1016/j.ijfatigue.2008.05.004

Google Scholar

[7] R. John, K.V. Jata, K. Sadananda, Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys, Int. J. of Fatigue. 25 (2003) 939–948.

DOI: 10.1016/j.ijfatigue.2003.08.002

Google Scholar

[8] M.N. James, D.J. Huhges, D.G. Hattingh, G.R. Bradley, G. Mills, P.J. Webster, Synchrotron diffraction measurement of residual stresses in friction stir welded 5383-H321 aluminium butt joints and their modification by fatigue cycling, Fatigue & Fracture of Eng. Mat. & Str. 27 (2004) 187–202.

DOI: 10.1111/j.1460-2695.2004.00736.x

Google Scholar

[9] P. Staron, M. Koçak, S. Williams, A. Wescott, Residual stress in friction stir-welded Al sheets, Proc. of the Third European Conference on Neutron Scattering, Physica B: Condensed Matter, 350 (2004) e491–e493.

DOI: 10.1016/j.physb.2004.03.128

Google Scholar

[10] H. Lombard, D.G. Hattingh, A. Steuwer, M.N. James, Effects of process parameters on the residual stresses in AA5083-H321 friction stir welds, Materials Science and Engineering: A. 501 (2009) 119-124.

DOI: 10.1016/j.msea.2008.09.078

Google Scholar

[11] T.H. Tra, M. Okazaki, K. Suzuki, Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure T351, Int. J. of Fatigue. 43 (2012) 23–29.

DOI: 10.1016/j.ijfatigue.2012.02.003

Google Scholar

[12] Y. Xu, R. Bao, H. Liu, A modified loading method for separating the effect of residual stress on fatigue crack growth rate of welded joints, Fatigue & Fracture of Eng. Mat. & Str. 40 (2017) 1227 – 1239.

DOI: 10.1111/ffe.12617

Google Scholar

[13] G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. of Fatigue. 25 (2003) 77–88.

DOI: 10.1016/s0142-1123(02)00038-5

Google Scholar

[14] L. Fratini, B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints, Int. J. of Machine Tools and Manufacture. 46 (2006) 611–619.

DOI: 10.1016/j.ijmachtools.2005.07.013

Google Scholar

[15] E. Ma Yu, P. Staron, T. Fischer, P.E. Irving, Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195-T8 aluminium. Part I: Experiments, Int. J. of Fatigue. 33 (2011) 1417–1425.

DOI: 10.1016/j.ijfatigue.2011.05.006

Google Scholar

[16] V.S. Pisarev, V.V. Balalov, V.S. Aistov, M.M. Bondarenko, M.G. Yustus, Reflection hologram interferometry combined with hole drilling technique as an effective tool for residual stresses fields investigation in thin-walled structures, Optics & Lasers in Eng. 36 (2001) 551–597.

DOI: 10.1016/s0143-8166(01)00065-3

Google Scholar

[17] I.N. Odintsev, V.P. Shchepinov, A.Yu. Shchikanov, Holographic interferometry for measuring residual stresses by using probing holes, Tech. Phys. 48 (2003) 1464–1467.

DOI: 10.1134/1.1626781

Google Scholar

[18] V.S. Obraztsov I.N. Odintsev, Yu. O. Zakharzhevsky, M.A. Pavlov, A.V. Tsykin, Investigation in welding technology for pipelines at a nuclear plant by holographic interferometry, Proc. of SPIE. 5477 (2004) 318–324.

DOI: 10.1117/12.560153

Google Scholar

[19] V.S. Pisarev, M.M. Bondarenko, A.V. Chernov, A.N. Vinogradova, General approach to residual stresses determination in thin-walled structures by combining the hole drilling method and reflection hologram interferometry. Int. J. of Mech. Sciences. 47 (2005) 1350-1376.

DOI: 10.1016/j.ijmecsci.2005.05.002

Google Scholar