[1]
M.A. Sutton, A.P. Reynolds, Y.Z. Ge, X. Deng, Limited weld residual stress measurements in fatigue crack propagation: Part II. FEM-based fatigue crack propagation with complete residual stress fields, Fatigue & Fracture of Eng. Mat. & Str. 29 (2006) 537–545.
DOI: 10.1111/j.1460-2695.2006.01023.x
Google Scholar
[2]
T. Ghidini, C. Dalle Donne. Fatigue crack propagation assessment based on residual stresses obtained through cut-compliance technique, Fatigue & Fracture of Eng. Mat. & Str. 30 (2007) 214–222.
DOI: 10.1111/j.1460-2695.2006.01059.x
Google Scholar
[3]
M.T. Milan, W.W. Bose Filho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behavior of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue & Fracture of Eng. Mat. & Str. 31 (2008) 526-538.
DOI: 10.1111/j.1460-2695.2008.01234.x
Google Scholar
[4]
S. Pasta, A. P. Reynolds, Evaluation of Residual Stresses During Fatigue Test in an FSW Joint, Strain. 44 (2008) 147–152.
DOI: 10.1111/j.1475-1305.2007.00358.x
Google Scholar
[5]
G. Pouget, A.P. Reynolds,. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds alloys. Int. J. of Fatigue. 30 (2008) 463–472.
DOI: 10.1016/j.ijfatigue.2007.04.016
Google Scholar
[6]
L. Fratini, S. Pasta, A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects, Int. J. of Fatigue. 31 (2009) 495–500.
DOI: 10.1016/j.ijfatigue.2008.05.004
Google Scholar
[7]
R. John, K.V. Jata, K. Sadananda, Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys, Int. J. of Fatigue. 25 (2003) 939–948.
DOI: 10.1016/j.ijfatigue.2003.08.002
Google Scholar
[8]
M.N. James, D.J. Huhges, D.G. Hattingh, G.R. Bradley, G. Mills, P.J. Webster, Synchrotron diffraction measurement of residual stresses in friction stir welded 5383-H321 aluminium butt joints and their modification by fatigue cycling, Fatigue & Fracture of Eng. Mat. & Str. 27 (2004) 187–202.
DOI: 10.1111/j.1460-2695.2004.00736.x
Google Scholar
[9]
P. Staron, M. Koçak, S. Williams, A. Wescott, Residual stress in friction stir-welded Al sheets, Proc. of the Third European Conference on Neutron Scattering, Physica B: Condensed Matter, 350 (2004) e491–e493.
DOI: 10.1016/j.physb.2004.03.128
Google Scholar
[10]
H. Lombard, D.G. Hattingh, A. Steuwer, M.N. James, Effects of process parameters on the residual stresses in AA5083-H321 friction stir welds, Materials Science and Engineering: A. 501 (2009) 119-124.
DOI: 10.1016/j.msea.2008.09.078
Google Scholar
[11]
T.H. Tra, M. Okazaki, K. Suzuki, Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure T351, Int. J. of Fatigue. 43 (2012) 23–29.
DOI: 10.1016/j.ijfatigue.2012.02.003
Google Scholar
[12]
Y. Xu, R. Bao, H. Liu, A modified loading method for separating the effect of residual stress on fatigue crack growth rate of welded joints, Fatigue & Fracture of Eng. Mat. & Str. 40 (2017) 1227 – 1239.
DOI: 10.1111/ffe.12617
Google Scholar
[13]
G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int. J. of Fatigue. 25 (2003) 77–88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[14]
L. Fratini, B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints, Int. J. of Machine Tools and Manufacture. 46 (2006) 611–619.
DOI: 10.1016/j.ijmachtools.2005.07.013
Google Scholar
[15]
E. Ma Yu, P. Staron, T. Fischer, P.E. Irving, Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195-T8 aluminium. Part I: Experiments, Int. J. of Fatigue. 33 (2011) 1417–1425.
DOI: 10.1016/j.ijfatigue.2011.05.006
Google Scholar
[16]
V.S. Pisarev, V.V. Balalov, V.S. Aistov, M.M. Bondarenko, M.G. Yustus, Reflection hologram interferometry combined with hole drilling technique as an effective tool for residual stresses fields investigation in thin-walled structures, Optics & Lasers in Eng. 36 (2001) 551–597.
DOI: 10.1016/s0143-8166(01)00065-3
Google Scholar
[17]
I.N. Odintsev, V.P. Shchepinov, A.Yu. Shchikanov, Holographic interferometry for measuring residual stresses by using probing holes, Tech. Phys. 48 (2003) 1464–1467.
DOI: 10.1134/1.1626781
Google Scholar
[18]
V.S. Obraztsov I.N. Odintsev, Yu. O. Zakharzhevsky, M.A. Pavlov, A.V. Tsykin, Investigation in welding technology for pipelines at a nuclear plant by holographic interferometry, Proc. of SPIE. 5477 (2004) 318–324.
DOI: 10.1117/12.560153
Google Scholar
[19]
V.S. Pisarev, M.M. Bondarenko, A.V. Chernov, A.N. Vinogradova, General approach to residual stresses determination in thin-walled structures by combining the hole drilling method and reflection hologram interferometry. Int. J. of Mech. Sciences. 47 (2005) 1350-1376.
DOI: 10.1016/j.ijmecsci.2005.05.002
Google Scholar