[1]
V. M. Sizyakov, V. Y. Bazhin, A. A. Vlasov. Status and prospects for growth of the aluminum industry. Metallurgist. 7.54 (2010) 409-414.
DOI: 10.1007/s11015-010-9316-z
Google Scholar
[2]
S. N. Fedorov, V. Y. Bazhin. Development of mechanical properties of aluminum-silicon alloys. Smart Nanocomposites. 6.2 (2015) 199-202.
Google Scholar
[3]
W. S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. J. M. S. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering. 280A.1 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[4]
N. E. Prasad, R. J. H. Wanhill. Aerospace materials and material technologies. Singapore Springer. (2017).
Google Scholar
[5]
F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Elsevier. (2012).
Google Scholar
[6]
H. E. Vatne, T. Furu, R. Ørsund, E. Nes. Modelling recrystallization after hot deformation of aluminium. Acta materialia, 44(11) (1996) 4463-4473.
DOI: 10.1016/1359-6454(96)00078-x
Google Scholar
[7]
E. Aryshenskii, R. Kawalla, J. Hirsch. Development of new fast algorithms for calculation of texture evolution during hot continuous rolling of Al–Fe alloys. Steel research international. 88.10 (2017) 1700053.
DOI: 10.1002/srin.201700053
Google Scholar
[8]
V. Yashin, E. Aryshenskii, J. Hirsch, S. Konovalov, I. Latushkin. Study of recrystallization kinetics in AA5182 aluminium alloy after deformation of the as-cast structure. Materials Research Express. 6(6) (2019) 066552.
DOI: 10.1088/2053-1591/ab085f
Google Scholar
[9]
O. Engler, H. E. Vatne. Modeling the recrystallization textures of aluminum alloys after hot deformation. JOM. 50.6 (1998) 23-27.
DOI: 10.1007/s11837-998-0123-y
Google Scholar
[10]
H. E. Vatne. Modelling recrystallization after hot deformation of aluminium. Acta materialia. 44.11 (1996) 4463-4473.
DOI: 10.1016/1359-6454(96)00078-x
Google Scholar
[11]
E. V. Aryshenskii, V. Y. Aryshenskii, E. D.Beglov, E. S. Chitnaeva, S. V. Konovalov. Investigation of subgrain and fine intermetallic participles size impact on grain boundary mobility in aluminum alloys with transitional metal addition. Materials Today: Proceedings. 19 (2019) 2183-2188.
DOI: 10.1016/j.matpr.2019.07.370
Google Scholar
[12]
E. Aryshenskii, R. Kawalla, J. Hirsch. Development of New Fast Algorithms for Calculation of Texture Evolution during Hot Continuous Rolling of Al–Fe Alloys. Steel Research International. 88.10 (2017) 1700053.
DOI: 10.1002/srin.201700053
Google Scholar
[13]
N. Y. Zolotorevsky, Y. F. Titovets, G. Y. Dyatlova. Lattice rotations in single grains of large-grained aluminum polycrystal during tension. Scripta materialia. 38.8 (1998) 1263-1268.
DOI: 10.1016/s1359-6462(98)00032-3
Google Scholar
[14]
H. Niels, R. F. Mehl. New discoveries in deformed metals. Metallurgical and materials transactions. 32A.12 (2001) 2917-2935.
DOI: 10.1007/s11661-001-0167-x
Google Scholar
[15]
E. Nes. Recovery revisited. Acta metallurgica et materialia. 43.6 (1995) 2189-2207.
DOI: 10.1016/0956-7151(94)00409-9
Google Scholar
[16]
E. Nes, H. E. Vatne. The 40°< 111> orientation relationship in recrystallisation. Zeitschrift für Metallkunde. 87.6 (1996) 448-453.
Google Scholar
[17]
M. A. Wells, I. V. Samarasekera, J. K. Brimacombe, E. B. Hawbolt, D. J. Lloyd. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part II. Textural evolution. Metall Mater Trans. 29 (1998) 621–633.
DOI: 10.1007/s11663-998-0097-8
Google Scholar