[1]
Kheifetz, M. L. From Information and Additive Technologies to Self-Reproduction of Machines and Organisms. Advanced Materials & Technologies 1 (2018).
DOI: 10.17277/amt.2018.01.pp.022-035
Google Scholar
[2]
ISO/ASTM 52900:2015 Additive manufacturing — General principles — Terminology.
Google Scholar
[3]
Grigoriyants, A.G., Kolchanov, D.S., Drenin, A.A., Denezhkin, A.O. Influence of the Main Parameters of Selective Laser Melting on Stability of Single Track Formation when Growing, Parts from Copper Alloys // BMSTU Journal of Mechanical Engineering 2019. №6. P. 20 – 29. http://izvuzmash.ru/catal…l/weld_rel/1661.html (.
DOI: 10.18698/0536-1044-2019-6-20-29
Google Scholar
[4]
Shupenev, A. E., Korshunov, I. S., Grigoryants, A. G. Obtaining thin films of bismuth telluride on polyimide substrates by pulsed laser deposition / / Physics and Technology of Semiconductors 2020. Vol. 54. no. 3. pp.305-309.
DOI: 10.1134/s1063782620030173
Google Scholar
[5]
Zheng, Y., Zhang, X., Wang, S., Li, Q., Qin, H., & Li, B. (2020). Similarity evaluation of topography measurement results by different optical metrology technologies for additive manufactured parts. Optics and Lasers in Engineering, 126, 105920.
DOI: 10.1016/j.optlaseng.2019.105920
Google Scholar
[6]
Santos, V. M. R., Thompson, A., Sims-Waterhouse, D., Maskery, I., Woolliams, P., & Leach, R. (2020). Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach. Additive Manufacturing, 32, 100964.
DOI: 10.1016/j.addma.2019.100964
Google Scholar
[7]
J. Berglund, R. Söderberg, K. Wärmefjord Industrial needs and available techniques for geometry assurance for metal AM parts with small scale features and rough surfaces Procedia Cirp, 75 (2018), pp.131-136.
DOI: 10.1016/j.procir.2018.04.075
Google Scholar
[8]
G. Ameta, R. Lipman, S. Moylan, P. Witherell Investigating the role of geometric dimensioning and tolerancing in additive manufacturing. J. Mech. Des., 137 (2015), p.111401.
DOI: 10.1115/1.4031296
Google Scholar
[9]
Leach, R. K., Bourell, D., Carmignato, S., Donmez, A., Senin, N., & Dewulf, W. (2019). Geometrical metrology for metal additive manufacturing. CIRP annals, 68(2), 677-700.
DOI: 10.1016/j.cirp.2019.05.004
Google Scholar
[10]
Grigoriyants, A.G., Tretyakov, R. S., Funtikov, V. A. Improving the quality of surface layers of parts obtained by laser additive technology. 2015. No. 10. Pp. 68-73.
Google Scholar
[11]
Grigoryants, A. G., Funtikov, V. A. Improving the surface quality of parts obtained from powder materials by the technology of coaxial laser melting. 2016. No. 6 (192). pp.33-39.
Google Scholar
[12]
E. Willenborg, Polieren von Werkzeugst¨ahlen mit Laserstrahlung, Dissertation RWTH Aachen, Shaker Verlag Aachen (2006).
Google Scholar
[13]
Grigoriyants, A.G., Shiganov, I. N. Development of Domestic Equipment for Laser Additive Technologies by Melting Metallic Powders." Russian Metallurgy (Metally) 2020 (2020): 649-653.
DOI: 10.1134/s0036029520060099
Google Scholar
[14]
Shupenev, A. E., Korshunov, I. S. and Grigoryants, A. G. On the Pulsed-Laser Deposition of Bismuth-Telluride Thin Films on Polyimide Substrates. // Semiconductors 54 (2020): 378-382.
DOI: 10.1134/s1063782620030173
Google Scholar
[15]
E. Willenborg, Polishing with Laser Radiation, URL:http://www.ilt.fraunhofer.de.
Google Scholar
[16]
Grigoriyants, A.G., Funtikov, V.A., Savkin, A. N., Tretyakov, R. S. Development of an optical system of a fiber laser for the process of laser polishing of parts (2016) No. 9 (63). pp.16-23. (.
Google Scholar
[17]
Sinitsa, M.O., Komshin, A.S. (2020, November). Development of a control system for large-sized products to improve product quality in mechanical engineering. In IOP Conference Series: Materials Science and Engineering (Vol. 971, No. 2, p.022057). IOP Publishing.
DOI: 10.1088/1757-899x/971/2/022057
Google Scholar
[18]
Krechetova, E.V., Syritskii, A.B., Komshin, A.S. Investigation of the dependence of the quality control of the adhesive joint on the capacitance of the joint for various types of dielectric // IOP Conference Series: Materials Science and Engineering, (2020) 971 042077 (.
DOI: 10.1088/1757-899x/971/4/042077
Google Scholar
[19]
Komshin, A.S., Potapov, K.G., Syritskii, A.B., Fomin, A.E. Monitoring system of hydro and wind power equipment based on intelligent measuring complexes and Neurodiagnostics // IOP Conference Series: Materials Science and Engineering, 2020, 971 022055 (.
DOI: 10.1088/1757-899x/971/2/022055
Google Scholar
[20]
Syritskii, A. B., Polyakov, D. A. The system of control of the sizes of details on machines of the turning group by means of the laser micrometer., Youth Scientific and Technical Bulletin 12 (2014): 2-2.
Google Scholar
[21]
Stukalova, A. D. (2018). Development of a measuring complex for monitoring machine-building objects in operation with the use of machine vision systems. Polytechnic Youth Journal, (10), 10-10.
Google Scholar
[22]
Pyt'ev, Y. P., & Chulichkov, A. I. (2016). Estimating the parameters of images and signals by morphological analysis. Measurement Techniques, 59(6), 584-588.
DOI: 10.1007/s11018-016-1012-3
Google Scholar
[23]
Tsybulskaya, N. D., Kulichkov, S. N., Chulichkov, A. I., Chunchuzov, I. P., & Perepelkin, V. G. (2020). Both Correlation and Morphological Methods of Detecting a Specified Acoustic Signal Propagating Through the Atmosphere. Pure and Applied Geophysics, 177, 4535-4543.
DOI: 10.1007/s00024-020-02506-z
Google Scholar