[1]
Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B. & Martina, F. 2016, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,, CIRP Annals - Manufacturing Technology, vol. 65, no. 2, pp.737-760.
DOI: 10.1016/j.cirp.2016.05.004
Google Scholar
[2]
Shamsaei, N., Yadollahi, A., Bian, L. & Thompson, S.M. 2015, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,, Additive Manufacturing, vol. 8, pp.12-35.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar
[3]
Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. & Wicker, R.B. 2012, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,, Journal of Materials Science and Technology, vol. 28, no. 1, pp.1-14.
DOI: 10.1016/s1005-0302(12)60016-4
Google Scholar
[4]
Dutta, B., Palaniswamy, S., Choi, J., Song, L.J. and Mazumder, J., 2011. Additive manufacturing by direct metal deposition. Advanced Materials and Processes, 169(5), pp.33-36.
Google Scholar
[5]
Olakanmi, E.O., Cochrane, R.F. & Dalgarno, K.W. 2015, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties,, Progress in Materials Science, vol. 74, pp.401-477.
DOI: 10.1016/j.pmatsci.2015.03.002
Google Scholar
[6]
Agapovichev, A.V., Sotov, A.V., Kyarimov, R.R., Alexeev, V.P., Smelov, V.G., Sufiiarov, V.S. & Masaylo, D.V. 2018, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology,, IOP Conference Series: Materials Science and Engineering.
DOI: 10.1088/1757-899x/441/1/012003
Google Scholar
[7]
Sotov, A.V., Agapovichev, A.V., Smelov, V.G., Kokareva, V.V. & Zenina, M.V. 2019, Investigation of the Ni-Co-Cr alloy microstructure for the manufacturing of combustion chamber GTE by selective laser melting,, International Journal of Advanced Manufacturing Technology, vol. 101, no. 9-12, pp.3047-3053.
DOI: 10.1007/s00170-018-3166-4
Google Scholar
[8]
Kokareva, V.V., Smelov, V.G., Agapovichev, A.V., Sotov, A.V. & Sufiiarov, V.S. 2018, Development of SLM quality system for gas turbines engines parts production,, IOP Conference Series: Materials Science and Engineering.
DOI: 10.1088/1757-899x/441/1/012024
Google Scholar
[9]
Naghshineh, B., Ribeiro, A., Jacinto, C. & Carvalho, H. 2020, Social impacts of additive manufacturing: A stakeholder-driven framework,, Technological Forecasting and Social Change.
DOI: 10.1016/j.techfore.2020.120368
Google Scholar
[10]
Turichin, G.A., Zemlyakov, E.V., Pozdeeva, E.Y., Tuominen, J. & Vuoristo, P. 2012, Technological possibilities of laser cladding with the help of powerful fiber lasers,, Metal Science and Heat Treatment, vol. 54, no. 3-4, pp.139-144.
DOI: 10.1007/s11041-012-9470-y
Google Scholar
[11]
Leyens, C. & Beyer, E. 2015, Innovations in laser cladding and direct laser metal deposition, in Laser Surface Engineering: Processes and Applications, pp.181-192.
DOI: 10.1016/b978-1-78242-074-3.00008-8
Google Scholar
[12]
Ocylok, S., Alexeev, E., Mann, S., Weisheit, A., Wissenbach, K. & Kelbassa, I. 2014, Correlations of melt pool geometry and process parameters during laser metal deposition by coaxial process monitoring,, Physics Procedia, p.228.
DOI: 10.1016/j.phpro.2014.08.167
Google Scholar
[13]
Turichin, G.A., Somonov, V.V., Babkin, K.D., Zemlyakov, E.V. & Klimova, O.G. 2016, High-Speed Direct Laser Deposition: Technology, Equipment and Materials,, IOP Conference Series: Materials Science and Engineering.
DOI: 10.1088/1757-899x/125/1/012009
Google Scholar
[14]
Yu, X., Lin, X., Tan, H., Hu, Y., Zhang, S., Liu, F., Yang, H. & Huang, W. 2021, Microstructure and fatigue crack growth behavior of Inconel 718 superalloy manufactured by laser directed energy deposition,, International Journal of Fatigue, vol. 143.
DOI: 10.1016/j.ijfatigue.2020.106005
Google Scholar
[15]
Zhang, J., Zhang, Q., Zhuang, Y., Kovalenko, V. & Yao, J. 2021, Microstructures and cyclic hot corrosion behavior of laser deposited Inconel 718 alloy under different heat treatment conditions,, Optics and Laser Technology, vol. 135.
DOI: 10.1016/j.optlastec.2020.106659
Google Scholar
[16]
Pollock, T.M. & Tin, S. 2006, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties,, Journal of Propulsion and Power, vol. 22, no. 2, pp.361-374.
DOI: 10.2514/1.18239
Google Scholar
[17]
Trosch, T., Strößner, J., Völkl, R., & Glatzel, U. (2016). Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Materials Letters, 164, 428-431.
DOI: 10.1016/j.matlet.2015.10.136
Google Scholar
[18]
Griffith, M.L., Ensz, M.T., Puskar, J.D., Robino, C.V., Brooks, J.A., Philliber, J.A., Smugeresky, J.E. & Hofmeister, W.H. 2000, Understanding the microstructure and properties of components fabricated by Laser Engineered Net Shaping (LENS),, Materials Research Society Symposium - Proceedings, vol. 625, pp.9-20.
DOI: 10.1557/proc-625-9
Google Scholar
[19]
Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C. & Kukreja, L.M. 2010, Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Materials Science and Engineering A, vol. 527, no. 29-30, pp.7490-7497.
DOI: 10.1016/j.msea.2010.08.034
Google Scholar
[20]
Polkin, I.S., Skvortsova, S.V., Turichin, G.A. & Novikova, M.B. 2019, Structure formation in A.M. processes of Titanium and Ni-base alloys, in Additive Manufacturing for the Aerospace Industry, pp.87-98.
DOI: 10.1016/b978-0-12-814062-8.00006-6
Google Scholar