Determining the Optimal Mode of the Inconel 718 Alloy Deposition at a Direct Laser Deposition Plant

Article Preview

Abstract:

The paper describes determining the optimal direct laser deposition mode when processing the results of a two-factor experiment by the steep ascent method. The dependence of the ultimate tensile strength on the volumetric energy density and the lateral pitch was chosen as the target function.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

3-12

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B. & Martina, F. 2016, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,, CIRP Annals - Manufacturing Technology, vol. 65, no. 2, pp.737-760.

DOI: 10.1016/j.cirp.2016.05.004

Google Scholar

[2] Shamsaei, N., Yadollahi, A., Bian, L. & Thompson, S.M. 2015, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,, Additive Manufacturing, vol. 8, pp.12-35.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar

[3] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. & Wicker, R.B. 2012, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies,, Journal of Materials Science and Technology, vol. 28, no. 1, pp.1-14.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[4] Dutta, B., Palaniswamy, S., Choi, J., Song, L.J. and Mazumder, J., 2011. Additive manufacturing by direct metal deposition. Advanced Materials and Processes, 169(5), pp.33-36.

Google Scholar

[5] Olakanmi, E.O., Cochrane, R.F. & Dalgarno, K.W. 2015, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties,, Progress in Materials Science, vol. 74, pp.401-477.

DOI: 10.1016/j.pmatsci.2015.03.002

Google Scholar

[6] Agapovichev, A.V., Sotov, A.V., Kyarimov, R.R., Alexeev, V.P., Smelov, V.G., Sufiiarov, V.S. & Masaylo, D.V. 2018, The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology,, IOP Conference Series: Materials Science and Engineering.

DOI: 10.1088/1757-899x/441/1/012003

Google Scholar

[7] Sotov, A.V., Agapovichev, A.V., Smelov, V.G., Kokareva, V.V. & Zenina, M.V. 2019, Investigation of the Ni-Co-Cr alloy microstructure for the manufacturing of combustion chamber GTE by selective laser melting,, International Journal of Advanced Manufacturing Technology, vol. 101, no. 9-12, pp.3047-3053.

DOI: 10.1007/s00170-018-3166-4

Google Scholar

[8] Kokareva, V.V., Smelov, V.G., Agapovichev, A.V., Sotov, A.V. & Sufiiarov, V.S. 2018, Development of SLM quality system for gas turbines engines parts production,, IOP Conference Series: Materials Science and Engineering.

DOI: 10.1088/1757-899x/441/1/012024

Google Scholar

[9] Naghshineh, B., Ribeiro, A., Jacinto, C. & Carvalho, H. 2020, Social impacts of additive manufacturing: A stakeholder-driven framework,, Technological Forecasting and Social Change.

DOI: 10.1016/j.techfore.2020.120368

Google Scholar

[10] Turichin, G.A., Zemlyakov, E.V., Pozdeeva, E.Y., Tuominen, J. & Vuoristo, P. 2012, Technological possibilities of laser cladding with the help of powerful fiber lasers,, Metal Science and Heat Treatment, vol. 54, no. 3-4, pp.139-144.

DOI: 10.1007/s11041-012-9470-y

Google Scholar

[11] Leyens, C. & Beyer, E. 2015, Innovations in laser cladding and direct laser metal deposition, in Laser Surface Engineering: Processes and Applications, pp.181-192.

DOI: 10.1016/b978-1-78242-074-3.00008-8

Google Scholar

[12] Ocylok, S., Alexeev, E., Mann, S., Weisheit, A., Wissenbach, K. & Kelbassa, I. 2014, Correlations of melt pool geometry and process parameters during laser metal deposition by coaxial process monitoring,, Physics Procedia, p.228.

DOI: 10.1016/j.phpro.2014.08.167

Google Scholar

[13] Turichin, G.A., Somonov, V.V., Babkin, K.D., Zemlyakov, E.V. & Klimova, O.G. 2016, High-Speed Direct Laser Deposition: Technology, Equipment and Materials,, IOP Conference Series: Materials Science and Engineering.

DOI: 10.1088/1757-899x/125/1/012009

Google Scholar

[14] Yu, X., Lin, X., Tan, H., Hu, Y., Zhang, S., Liu, F., Yang, H. & Huang, W. 2021, Microstructure and fatigue crack growth behavior of Inconel 718 superalloy manufactured by laser directed energy deposition,, International Journal of Fatigue, vol. 143.

DOI: 10.1016/j.ijfatigue.2020.106005

Google Scholar

[15] Zhang, J., Zhang, Q., Zhuang, Y., Kovalenko, V. & Yao, J. 2021, Microstructures and cyclic hot corrosion behavior of laser deposited Inconel 718 alloy under different heat treatment conditions,, Optics and Laser Technology, vol. 135.

DOI: 10.1016/j.optlastec.2020.106659

Google Scholar

[16] Pollock, T.M. & Tin, S. 2006, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties,, Journal of Propulsion and Power, vol. 22, no. 2, pp.361-374.

DOI: 10.2514/1.18239

Google Scholar

[17] Trosch, T., Strößner, J., Völkl, R., & Glatzel, U. (2016). Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Materials Letters, 164, 428-431.

DOI: 10.1016/j.matlet.2015.10.136

Google Scholar

[18] Griffith, M.L., Ensz, M.T., Puskar, J.D., Robino, C.V., Brooks, J.A., Philliber, J.A., Smugeresky, J.E. & Hofmeister, W.H. 2000, Understanding the microstructure and properties of components fabricated by Laser Engineered Net Shaping (LENS),, Materials Research Society Symposium - Proceedings, vol. 625, pp.9-20.

DOI: 10.1557/proc-625-9

Google Scholar

[19] Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C. & Kukreja, L.M. 2010, Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Materials Science and Engineering A, vol. 527, no. 29-30, pp.7490-7497.

DOI: 10.1016/j.msea.2010.08.034

Google Scholar

[20] Polkin, I.S., Skvortsova, S.V., Turichin, G.A. & Novikova, M.B. 2019, Structure formation in A.M. processes of Titanium and Ni-base alloys, in Additive Manufacturing for the Aerospace Industry, pp.87-98.

DOI: 10.1016/b978-0-12-814062-8.00006-6

Google Scholar