Functionalization of Multi-Walled Carbon Nanotubes Using Microwave Method

Article Preview

Abstract:

Multi-walled carbon nanotubes (MWCNTs) probably hold with each other and agglomerated due to van der Waals force. Functionalized process was used to reduce its ability to agglomerate and to increase dispersion in solution. The present work is focused on the microwave irradiation in order to achieve rapid functionalization of MWCNTs compared with other known techniques. The power of microwave radiation was selected by investigating the structural integrity of the samples by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM), while BET surface area measurement was used to measure the MWCNT surface area before and after treatment. The dispersion test in the solution was performed to determine the separation capability of untreated MWCNTs and f-MWCNTs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

237-244

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jha, A. Singh, P. Sharma and N. K. Fuloria, Journal of Drug Delivery Science and Technology, 101811 (2020).

Google Scholar

[2] S. Dhall, N. Jaggi and R. Nathawat, Sensors and Actuators A: Physical 201, 321-327 (2013).

DOI: 10.1016/j.sna.2013.07.018

Google Scholar

[3] U. Mehmood, I. A. Hussein, K. Harrabi, M. Mekki, S. Ahmed and N. Tabet, Solar Energy Materials and Solar Cells 140, 174-179 (2015).

DOI: 10.1016/j.solmat.2015.04.004

Google Scholar

[4] K. K. Gangu, S. Maddila and S. B. Jonnalagadda, Science of the Total Environment 646, 1398-1412 (2019).

Google Scholar

[5] N. J. Ridha, M. H. H. Jumali, A. A. Umar and F. K. Mohamad, presented at the 2013 Seventh International Conference on Sensing Technology (ICST), 2013 (unpublished).

DOI: 10.1109/icsenst.2013.6727627

Google Scholar

[6] N. J. Ridha, M. H. H. Jumali, A. A. Umar and F. K. Mohamad, Procedia Technology 12, 271-276 (2014).

Google Scholar

[7] N. J. Ridha, F. K. M. Alosfur, M. H. H. Jumali and S. Radiman, Journal of Physics D: Applied Physics 51 (43), 435101 (2018).

DOI: 10.1088/1361-6463/aadecb

Google Scholar

[8] H. B. A. Kadhim, N. J. Ridha, F. K. M. Alosfur, N. M. Umran, R. Madlol, K. J. Tahir and R. T. Ahmed, presented at the Journal of Physics: Conference Series, 2018 (unpublished).

DOI: 10.1088/1742-6596/1032/1/012039

Google Scholar

[9] N. J. Ridha, H. B. A. Kadhim, F. K. M. Alosfur and R. T. Ahmed, Materials Research Express 5 (12), 125008 (2018).

Google Scholar

[10] F. K. M. Alosfur, A. A. Ouda, N. J. Ridha and S. H. Abud, Materials Research Express 6 (6), 065028 (2019).

Google Scholar

[11] F. K. M. Alosfur, N. J. Ridha, M. H. H. Jumali and S. Radiman, Nanotechnology 29 (14), 145707 (2018).

DOI: 10.1088/1361-6528/aaabee

Google Scholar

[12] F. K. M. Alosfur, M. H. H. Jumali, S. Radiman, N. J. Ridha, M. A. Yarmo and A. A. Umar, Nanoscale research letters 8 (1), 1-6 (2013).

DOI: 10.1186/1556-276x-8-346

Google Scholar

[13] F. K. M. Alosfur, A. A. Ouda, N. J. Ridha and S. H. Abud, presented at the AIP conference proceedings, 2019 (unpublished).

Google Scholar

[14] M. H. Haji Jumali, K. Firas, S. Radiman and A. A. Umar, presented at the Advanced Materials Research, 2012 (unpublished).

Google Scholar

[15] A. A. Ouda, F. K. M. Alosfur, N. J. Ridha, S. H. Abud, N. M. Umran, H. H. Al-aaraji and R. A. Madlool, presented at the Journal of Physics: Conference Series, 2018 (unpublished).

DOI: 10.1088/1742-6596/1032/1/012038

Google Scholar

[16] S. Mallakpour and S. Soltanian, RSC advances 6 (111), 109916-109935 (2016).

DOI: 10.1039/c6ra24522f

Google Scholar

[17] A. Farghali, H. A. Tawab, S. A. Moaty and R. Khaled, Journal of Nanostructure in Chemistry 7 (2), 101-111 (2017).

Google Scholar

[18] P.-C. Ma, N. A. Siddiqui, G. Marom and J.-K. Kim, Composites Part A: Applied Science and Manufacturing 41 (10), 1345-1367 (2010).

Google Scholar

[19] J. Saldaña, P. Gallay, S. Gutierrez, M. Eguílaz and G. Rivas, Analytical and bioanalytical chemistry 412 (21), 5089-5096 (2020).

DOI: 10.1007/s00216-020-02396-z

Google Scholar

[20] S. W. Ham, H. P. Hong, J. H. Kim, S. J. Min and N. K. Min, Journal of nanoscience and nanotechnology 14 (11), 8476-8481 (2014).

Google Scholar

[21] L.Y. Jun, N. Mubarak, L.S. Yon, C.H. Bing, M. Khalid and E. Abdullah, Journal of environmental chemical engineering 6 (5), 5889-5896 (2018).

DOI: 10.1016/j.jece.2018.09.008

Google Scholar

[22] H. Cui, X. Yan, M. Monasterio and F. Xing, Nanomaterials 7 (9), 262 (2017).

Google Scholar

[23] S. Siljander, P. Keinänen, A. Räty, K. R. Ramakrishnan, S. Tuukkanen, V. Kunnari, A. Harlin, J. Vuorinen and M. Kanerva, International journal of molecular sciences 19 (6), 1819 (2018).

DOI: 10.3390/ijms19061819

Google Scholar

[24] M. I. Hussein, S. S. Jehangir, I. Rajmohan, Y. Haik, T. Abdulrehman, Q. Clément and N. Vukadinovic, Scientific Reports 10 (1), 1-11 (2020).

DOI: 10.1038/s41598-020-72928-1

Google Scholar

[25] M. S. Raghuveer, S. Agrawal, N. Bishop and G. Ramanath, Chemistry of materials 18 (6), 1390-1393 (2006).

Google Scholar

[26] S. Chopra, R. Deshpande, G. Naik, K. A. Deshmukh, A. D. Deshmukh and D. Peshwe, Applied Physics A 125 (12), 1-9 (2019).

Google Scholar

[27] N. A. Buang, F. Fadil, Z. A. Majid and S. Shahir, Digest Journal of Nanomaterials and Biostructures 7 (1), 33-39 (2012).

Google Scholar

[28] M. Davarpanah, M. Maghrebi and E. Hosseinipour, Applied Physics A 115 (1), 167-175 (2014).

Google Scholar