[1]
Khan, H.A.A., S.A. Shad, and W. Akram, Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan. Parasitology research, 2013. 112(5): pp.2049-2054.
DOI: 10.1007/s00436-013-3365-8
Google Scholar
[2]
Bhattacharyya, A., et al., Nano-particles-A recent approach to insect pest control. African Journal of Biotechnology, 2010. 9(24): pp.3489-3493.
Google Scholar
[3]
Shankar, S.S., et al., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of colloid and interface science, 2004. 275(2): pp.496-502.
DOI: 10.1016/j.jcis.2004.03.003
Google Scholar
[4]
Chandran Prathap, S., et al., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera leaf extract. New Methods Towards Synthesis and Controlled Functionalisation of Inorganic Nanoparticles, 2009: p.91.
DOI: 10.1021/bp0501423
Google Scholar
[5]
Arunachalam, K.D., S.K. Annamalai, and S. Hari, One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. International journal of nanomedicine, 2013. 8: p.1307.
DOI: 10.2147/ijn.s36670
Google Scholar
[6]
Chen, X. and H.J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicology letters, 2008. 176(1): pp.1-12.
DOI: 10.1016/j.toxlet.2007.10.004
Google Scholar
[7]
Zhang, W.-x., Nanoscale iron particles for environmental remediation: an overview. Journal of nanoparticle Research, 2003. 5(3): pp.323-332.
Google Scholar
[8]
Park, H.-J., et al., A new composition of nanosized silica-silver for control of various plant diseases. The plant pathology journal, 2006. 22(3): pp.295-302.
DOI: 10.5423/ppj.2006.22.3.295
Google Scholar
[9]
Kanwal, Z., et al., Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@ AgNPs) and their density-dependent antibacterial activity. Royal Society open science, 2019. 6(5): p.182135.
DOI: 10.1098/rsos.182135
Google Scholar
[10]
Vilela, D., M.C. González, and A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Analytica chimica acta, 2012. 751: pp.24-43.
DOI: 10.1016/j.aca.2012.08.043
Google Scholar
[11]
Hoang, V.-T., et al., Functionalized-AgNPs for Long-Term Stability and Its Applicability in the Detection of Manganese Ions. Advances in Polymer Technology, 2020. (2020).
Google Scholar
[12]
Alyamani, E.J., et al., Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia. Annals of clinical microbiology and antimicrobials, 2015. 14(1): pp.1-9.
DOI: 10.1186/s12941-015-0098-9
Google Scholar
[13]
Subarani, S., S. Sabhanayakam, and C. Kamaraj, Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology research, 2012. 112(2): pp.487-499.
DOI: 10.1007/s00436-012-3158-5
Google Scholar
[14]
Narayanan, K.B. and N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in colloid and interface science, 2011. 169(2): pp.59-79.
DOI: 10.1016/j.cis.2011.08.004
Google Scholar
[15]
Bijanzadeh, A., M. Vakili, and R. Khordad, A study of the surface plasmon absorption band for nanoparticles. International Journal of Physical Sciences, 2012. 7(12): pp.1943-1948.
Google Scholar
[16]
Kaviya, S., et al., Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(3): pp.594-598.
DOI: 10.1016/j.saa.2011.03.040
Google Scholar