Materials Science Forum Vol. 1039

Paper Title Page

Abstract: This paper describes the synthesis and development of new polymers for solid state nuclear trak detector of two novel poly Allyl cloride – co Acrylic acid and diethanol amine of polymeric detectors of alpha charged particle tracks. The detectors were irradiated by two radioactive sources, Amercium (Am-240) and Polonium (Po-210) for 5 hours, and traces of alpha particles were seen in the microscope and their diameters were measured. The results showed the density of tracks of alpha particles from (Am-240) and (Po-210) are 295.86, 655.33 respectively, while the average of their diameters are 5.83, 4.78 respectively.
3
Abstract: In this article, the critical buckling load of functionally graded beam is calculated using ANSYS APDL Software (version 17.2) under mechanical and thermal load. In mechanical load, the effects of length to thickness ratio, power law index and mode number on the non-dimension critical buckling load of fixed-fixed and fixed-free FG beam. The results show that the length to thickness ratio is not effect on the non-dimension critical buckling load while the power law index and mode number effect on the non-dimension critical buckling load. In thermal load, the critical buckling load for fixed-fixed and pinned-pinned FG beam depend on length to thickness ratio, power law index and mode number. The results show that the critical buckling load increases with decreasing length to thickness ratio.
7
Abstract: Modifying buckling behavior of the composite structure has been investigated in the recent few years with different reinforcement fiber and powder materials and nanomaterials. It can be seen from previous studies that the addition of nanomaterials leads to a significant modification in the buckling behavior of structure by using a low mount of nanomaterials. In this work, reinforcement of composite materials using two types of nanomaterials together, SiO2 and Al2O3 nanomaterials, to modify the buckling behavior for plate structure is studied. Therefore, the investigation was done experimentally and numerically. The experimental work is performed by manufacturing composite plates with various weight fractions with the nanoeffect, and then their mechanical properties and buckling characterization were evaluated. The numerical work was done using the finite element method to estimate the plate structure’s buckling behavior with various nanomaterials effects. A comparison between the experimental and the numerical results for plate buckling behavior is expressed, showing that the discrepancy of the results was not more than 12.56%. Finally, the results showed that the buckling behavior for a reinforced plate was improved by 35% when two types of nanomaterials were used together.
23
Abstract: This research examines the effect of size and weight fraction of the eggshell particles added on the hardening of the Al metal reinforced by eggshell Particles using the program MINITAB 16. Powder technology method has been used to produce a composite material, The composite material was obtained by adding different weight fractions (0,2, 6,10 and 12 wt. %) and the size (100,240,350,510and 670um) of eggshell particles to aluminum powder. It samples was composed by using pressing of single action then accompanied directly by process of sintering at 474°C under the inert gas effect conditions. it was concluded that the best hardening of (72.6971 Mpa) can be obtained when the variables were (Xi = 12 wt%) and (X2 =100um). The lights value of Xi and X2, obtained using the programs, was used in practice giving hardening (74Mpa) which it nearly similar to that obtained by program. Also results show that the variables weight fraction (X1) & Particle Size (X2) have a significant effect on hardening. Moreover, the hardening increases with increasing weight fraction. While hardening value decreases gradient with down eggshell particle size.
42
Abstract: In this work, the mechanical properties of three types of dough rubber NR, NR/BR, and NR/SBR have been investigated using five percentages of materials fill (30, 40, 50, 60, and 70) pphr. Carbon black was used as a filler material. The tensile test was achieved with 300% elongation and strain rates of (100, 200, 300, 400, and 500) mm/min. The tensile strength results indicate that the maximum value of tensile strength for NR Dough carbon black 60 pphr reaches 23.2 MPa; the maximum tensile strain of NR dough (carbon black 50 pphr) reaches 805.5%, and the modulus of elasticity with carbon black 70 pphr reaches 4.3 MPa. It was found that the compression strength decreases with increasing the carbon black, and the maximum value of compression set at NR dough (carbon black 30 pphr) reaches 29.3%. Fatigue crack growth was achieved according to ASTM D 813 for rubber testing. The minimum value of fatigue strength dough (carbon black 70 pphr) reaches 68 (IRHD). For NR dough (carbon black 30,40,50 pphr) reaches 3.5 mm at the number of cycles 15000 cycle. Finally, the maximum hardness of NR.
51
Abstract: The aim of the present paper is to study the vibration behavior of a sandwich structure with honeycomb core experimentally and numerically with different design parameters. The natural frequency and damping ratio were obtained. Core height, cell angle and face thickness were considered as design parameters. Finite element models for the honeycomb sandwich were developed and analyzed via ANSYS finite element analysis (FEA) software. Response Surface Method (RSM) is used to establish numerical methodology to simulate the effect of the design parameters on natural frequency and damping ration. The employment of (RSM) provides a study of the effect of design parameters on natural frequency and damping ratio, numerical modeling of them in term of design parameters and specifying optimization condition. The experimental tests were conducted on sandwich specimens for the validity goal of the previous models created via the finite element analysis. The obtained results show that the natural frequency is directly proportional to the core height and face thickness, while it is inversely proportional to cell angle, Vice versa for damping ratio. Moreover, the optimum value of natural frequency (209.031 Hz) as minimum and damping ratio (0.0320) as maximum were found at 4.8855 mm of core height, 26.770 cell angle and 0.0614 mm face thickness.
65
Abstract: In this paper, the effect of laser surface heat treatment on wear resistance and hardness of an aluminum alloy Al-6061 as a base material with different ratios of SiC particles as an additive was studied. The composite material was prepared from Al-6061 aluminum alloy and particles with a granular size of (10-70) μm with different weight ratios (15%, 12%, 9%, 6%, 3%), where the stirred plumbing technique was used to ensure An increase in the wettability of SiC particles in the base alloy fuse and the possibility of distributing it uniformly. The laser surface heat treatment of the composite material prepared using the Neodymium - YAG laser was performed with a power of 1J, a wavelength of 1.06 μm, a pulse time of 5 m sec, and a distance of 30 cm between the exit area of the laser from the system and the piece to be thermally treated. The results showed an improvement in the mechanical properties of the prepared composite material (hardness, wear resistance) after performing the surface heat treatment by laser. The increase in the hardness amount was 12.9% when adding 15% of particles to the base alloy. The results showed that the wear rate value decreases with increasing the added percentages of SiC particles. The results also showed that the surface heat treatment of the laser led to an improvement in the wear resistance of the prepared composite material and for all the added ratios of SiC particles at different loading pressures used and in close proportions. Also, the prepared samples were photographed using a regular optical microscope before and after the laser surface heat treatment.
86
Abstract: Crude petroleum filters were prepared from low-cost materials based on kaolin powder and combustible materials as palm fronds powder which acts as pore creating agent. The samples with different content (10, 20, 30,40) wt% of palm fronds powder (P.F) were fabricated using a dry pressing method and fired at 1100 °C. Crude petroleum filters were characterized by X-ray diffraction (XRD), energy dispersive analysis (EDS) and Scanning electron microscopy (SEM). Physical properties (linear shrinkage, apparent porosity, water absorption, apparent density), mechanical properties (compressive strength and diametrical strength ) and Metallic Content.
96
Abstract: Nanocomposites were prepared by the method of solution casting with different proportions of magnesium oxide nanoparticles (0, 1, 3, 5, 7 and 9) wt%. The structural and optical properties of nanocomposites of CMC/MgO have been studied. It was well known that the increased content of MgONPs in the method contributes to the peaks of MgONPs being completely integrated and/or disappearing within the CMC diffraction halos in the experimental results of XRD study. The differences in the XRD spectrum indicate that doping with nanoparticles induced a disparity in the microstructure of the polymer. Nanocomposite film scanning electron microscopy (SEM) reveals that MgONPs appear to form aggregates and scatter well in (CMC/MgO) nanocomposite films and at apply 9 wt. It forms a continuous network within the polymer for the percentage of MgONPs to (CMC) polymer. FTIR spectrum revealed the MgONPs has no destructive influence on the polymer structure as no covalent bonds formed between CMC and MgONPs. The optical properties of CMC/MgO nanocomposites were measured in wavelength range (200–900) nm. Experimental studies have shown that the absorbance, absorption coefficient, extinction coefficient, refractive index, actual and imaginary dielectric constant of CMC polymer is improved with an increase in concentrations of MgONPs in nanocomposites. The transmittance and energy gap of CMC polymer are decreased with the increase in the concentrations of MgONPs.
104

Showing 1 to 10 of 53 Paper Titles