[1]
V. Birman and L. W. Byrd, Modeling and analysis of functionally graded materials and structures,, Appl. Mech. Rev., vol. 60, p.195–216, (2007).
DOI: 10.1115/1.2777164
Google Scholar
[2]
S. Suresh, A. Mortensen, Functionally graded materials, London: The Institute of Materials, IOM Communications Ltd., (1998).
Google Scholar
[3]
D.K. Jha, T. Kant, R.K. Singh, A critical review of recent research on functionally graded plates, Compos. Struct., vol. 96, pp.833-849, (2013).
DOI: 10.1016/j.compstruct.2012.09.001
Google Scholar
[4]
Manickarajah D, Xie YM, Steven GP. Optimization of columns and frames against buckling. Computers and Structures. 2000; 75:45-54.
DOI: 10.1016/s0045-7949(99)00082-6
Google Scholar
[5]
Maalawi KY, El-Chazly NM. Practical shapes of the strongest columns. Journal of Engineering and Applied Science. 2004; 51:543-58.
Google Scholar
[6]
Z. Q. Cheng and R. C. Batra, Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates., Journal of Sound and Vibration, vol. 229, no. 4, pp.879-895, (2000).
DOI: 10.1006/jsvi.1999.2525
Google Scholar
[7]
Singh KV, Li G. Buckling of functionally graded and elastically restrained non-uniform columns. Composites: Part B. 2009; 40:393–403.
DOI: 10.1016/j.compositesb.2009.03.001
Google Scholar
[8]
Heydari A. Buckling of functionally graded beams with rectangular and annular sections subjected to axial compression. International Journal of Advanced Design and Manufacturing Technology. 2011; 5:25-31.
Google Scholar
[9]
F. Farhatnia, M. A. Bagheri, and A. Ghobadi, Buckling analysis of FGM thick beam under different boundary conditions using GDQM,, Advanced Materials Research, vol. 433, pp.4920-4924, (2012).
DOI: 10.4028/www.scientific.net/amr.433-440.4920
Google Scholar
[10]
Li SR, Batra R. Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Composite Structures. 2013; 95:5–9.
DOI: 10.1016/j.compstruct.2012.07.027
Google Scholar
[11]
Yilmaz Y, Girgin Z, Evran S. Buckling analyses of axially functionally graded nonuniform columns with elastic restraint using a localized differential quadrature method. Mathematical Problems in Engineering. 2013; 2013:1-12.
DOI: 10.1155/2013/793062
Google Scholar
[12]
Aldadah MG, Ranganathan SI, Abed FH. Buckling of two phase inhomogeneous columns at arbitrary phase contrasts and volume fractions. Journal of Mechanics of Materials and Structures. 2014; 9:465–474.
DOI: 10.2140/jomms.2014.9.465
Google Scholar
[13]
K. Swaminathan, D. Naveenkumar, A. Zenkour, and E. Carrera, Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review,, Composite Structures, vol. 120, pp.10-31, (2015).
DOI: 10.1016/j.compstruct.2014.09.070
Google Scholar
[14]
M. Filippi, E. Carrera, and A. Zenkour, Static analyses of FGM beams by various theories and finite elements,, Composites Part B: Engineering, vol. 72, pp.1-9, (2015).
DOI: 10.1016/j.compositesb.2014.12.004
Google Scholar
[15]
Huang Y, Zhang M, Rong H. Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko theory. Acta Mechanica Solida Sinica. 2016; 29:200-207.
DOI: 10.1016/s0894-9166(16)30108-2
Google Scholar
[16]
A. A. Khan, M. NaushadAlam, N. u. Rahman, and M. Wajid, Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam,, Latin American Journal of Solids and Structures, vol. 13, no. 4, pp.690-714, (2016).
DOI: 10.1590/1679-78252159
Google Scholar
[17]
Ranganathan SI, Abed FH, Aldadah MG. Buckling of slender columns with functionally graded microstructures. Mechanics of Advanced Materials and Structures. 2016; 23:1360- 1367.
DOI: 10.1080/15376494.2015.1086452
Google Scholar
[18]
Kahya V, Turan M. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites: Part B. 2017; 109:108-115.
DOI: 10.1016/j.compositesb.2016.10.039
Google Scholar
[19]
M. Hosseini, F. Farhatnia, and S. Oveissi, Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via stokes' transformation,, Research on Engineering Structures & Materials, (2017).
DOI: 10.17515/resm2016.83me1018
Google Scholar
[20]
V. Kahya and M. Turan, Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element,, Composites Part B: Engineering, (2018).
DOI: 10.1016/j.compositesb.2018.04.011
Google Scholar
[21]
F. Farhatnia and M. Sarami; Finite Element Approach of Bending and Buckling Analysis of FG Beams Based on Refined Zigzag Theory,; Universal Journal of Mechanical Engineering 7(4): 147-158, 2019;.
DOI: 10.13189/ujme.2019.070402
Google Scholar
[22]
K Soncco, X Jorge and R Arciniega; Postbuckling Analysis of Functionally Graded Beams,; IOP Conf. Series: Materials Science and Engineering 473 (2019) 012028;.
DOI: 10.1088/1757-899x/473/1/012028
Google Scholar
[23]
Hayder Z. Zainy, Luay S. Al-Ansari, Ali M. H. Al-Hajjar, Mahdi M. S. Shareef ; Analytical and numerical approaches for calculating the static deflection of functionally graded beam under mechanical load,; International Journal of Engineering & Technology, 7 (4) (2018) 3889-3896.
Google Scholar
[24]
Y. Kiani a and M.R. Eslami ; Thermomechanical Buckling of Temperature dependent FGM Beams,;Latin American Journal of Solids and Structures 10(2013) 223 – 246.
DOI: 10.1590/s1679-78252013000200001
Google Scholar
[25]
Ismail Bensaid and Ahmed Bekhadda; Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams,; Advances in Materials Research, Vol. 7 No. 1 (2018) 1-16. DOI: https://doi.org/10.12989/amr.2018.7.1.001.
Google Scholar
[26]
ANSYS Mechanical APDL Element Reference, ANSYS, Inc., (2016).
Google Scholar
[27]
R. Saljooghi, M.T. Ahmadiana;b; and G.H. Farrahi ; Vibration and buckling analysis of functionally graded beams using reproducing kernel particle method ,; Scientia Iranica B (2014) 21(6), 1896-1906.
Google Scholar