The Effect of Electrical Discharge Machining Total Heat Generated on White Layer Thickness (WLT) and Fatigue Life for Die Steel

Article Preview

Abstract:

The present paper concerns with studying the high complexity nature of the EDM multiple discharge analysis transformed into a feasible solvable mathematical model for the die steel workpiece type AISI D2, the copper and graphite materials electrodes, and the kerosene dielectric by setting the Transient Thermal and the Multiphysics analyses domain loads models using the ANSYS 15.0 finite element analysis. Two load steps modeled the entering setting time analysis, six sub-periods setting time cycle, four heating, and two cooling periods, six transient temperature values, and four transient thermal convection models. The radius spark (discharge channel), the total number of discharges sparks, the total heat power generation, the absorbed heat flux fractions by the electrodes, the workpieces and kerosene fluid dielectric, the heat-affected zones (HAZ), the hard white recast layer thickness (WLT) and properties, the workpiece fatigue safety factor and life after EDM machining were determined and simulated. The thermal model errors compared with theoretical calculations and a modeled predicted equation were also deduced and verified. The experimental results evinced that the maximum total heat flux generated using the graphite material electrodes is (2.619E+009 W/m2) which is higher than when using copper material electrodes by (82.4%), while the minimum value of the white layer thickness (WLT) after EDM machining using graphite tool electrodes is (8.34 μm), which it gives an improvement comparing with using of copper tool electrodes by (40.0%). The macrographic and microstructure evaluation manifest that the discharge spark craters sizes when using graphite tool electrodes reached their sizes. The maximum fatigue stresses and fatigue safety factor when using copper tool electrodes are (240 MPa) and (0.89) which is higher by a value of (3.35%) and (3.45%) comparing with the using of graphite electrodes, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

182-200

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. M. Jamadar and M. V. Kavade: International Journal of Mechanical and Production Engineering Vol. 2, 8 (2014), p.25.

Google Scholar

[2] S. Kumar and S. Dhanabalan: Springer Nature Applied Sciences Vol. 1, 396 (2019), p.1.

Google Scholar

[3] S. K. Sahu and S. Datta: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering Vol. 233, 2 (2019), p.1.

Google Scholar

[4] M. G. Rathi and. D. V. Mane: International Journal of Scientific and Research Publications Vol. 4, 11 (2014), p.1.

Google Scholar

[5] G. S. Prihandana, M. Mahardika and T. Sriani: Appl. Sci. Vol. 10 (2020), p.1.

Google Scholar

[6] F. Klocke, M. Zeis, A. Klink and D. Veselova: Proceedings of the 1st CIRP Global Web Conference on Interdisciplinary Research in Production Engineering Vol. 2 (2012), p.98.

Google Scholar

[7] S. K. Majhi, M. K. Pradhan and H. Soni: International Journal of Applied Research in Mechanical Engineering Vol. 3, 1 (2013), p.82.

Google Scholar

[8] R. Krishnan, S. Dinesh, V. Swaminthan and Naveen: International Journal of Advance Research, Ideas and Innovations in Technology Vol. 4, 2 (2018), p.1530.

Google Scholar

[9] X. Li, D. Wei, Q. Li and X. Yang: The International Journal of Advanced Manufacturing Technology Vol. 107 (2020), p.4403.

Google Scholar

[10] S. K. Majhi, T. K. Mishra, M. K. Pradhan and S. Hargovind: International Journal of Current Engineering and Technology Vol. 4, 1 (2014), p.19.

Google Scholar

[11] B. B. Patel and K. B. Rathod: International Journal of Scientific and Engineering Research Vol. 3, 6 (2012), p.1.

Google Scholar

[12] T. C. Bhagat, B. L. Seth and H. S. Payal: Indian Journal of Science and Technology Vol. 5, 10 (2012), p.3428.

Google Scholar

[13] J. E. Abu Qudeiri, A. Zaiout, A. I. Mourad, M. H. Abidi and A. Elkaseer: Applied Sciences Vol. 10, 6 (2020), p.1.

Google Scholar

[14] P. Chaudhury and, S. Samantaray: Annales de Chimie - Science des Matériaux Vol. 43, 4 (2019), p.273.

Google Scholar

[15] A. N. Al-Khazraji, , S. A. Amin, and S. M. Ali: Eng. And Tech. Journal Vol 33 Part A, 6 (2015), p.1399.

Google Scholar

[16] P. J. Liew, C. Y. Yap, J. Wang, T. Zhou and J. Yan: Int. J. Extrem. Manuf. Vol. 2 (2020), p.1.

Google Scholar

[17] B. Xin, M. Gao, S. Li and B. Feng: Mathematical Problems in Engineering, Article ID 5652197 (2020), p.1.

Google Scholar

[18] J. Anbesh, A. Ankur, G. Nishant and D. Akhil: International Research Journal of Engineering and Technology Vol. 5, 2 (2018), p.433.

Google Scholar

[19] B. Nahak and A. Gupta: Manufacturing Rev. Vol. 6, 2 (2019), p.1.

Google Scholar

[20] F. Klockea, L. Hensgena, A. Klinka, L. Ehleb and A. Schwedtb: Procedia CIRP Vol. 42 (2016), p.673.

Google Scholar

[21] Y. C. Lin, B. H. Yan and F. Y. Huang: Int. J. Adv. Manuf. Technol. Vol. 18, 9 (2001), p.673.

Google Scholar

[22] B. Reddy, G. N. Kumar and K. Chandrashekar: International Journal of Current Engineering and Technology Vol. 4, 3 (2014), p.1218.

Google Scholar

[23] S. Reddy and C. S. Rao: Research Journal of Engineering Sciences Vol. 2, 1 (2013), p.21.

Google Scholar

[24] J. E. Abu Qudeiri, A. Saleh, A. Ziout, A. I. Mourad, M. H. Abidi and A. Elkaseer: Materials Vol. 12, 907 (2019), p.1.

DOI: 10.3390/ma12060907

Google Scholar

[25] R. Swiercz, D. O. Swiercz and T. Chmielewski: Micromachines Vol. 10, 72 (2019), p.1.

Google Scholar

[26] L. Gu, L. Le., W. Zhao, and K. P. Rajurkar: International Journal of Machine Tools and Manufacturing Vol. 53 (2012), p.100.

Google Scholar

[27] S. K. Sahu, T. Jadam, S. Datta and G. Nandi: Journal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 40, 330 (2018), P. 1400.

Google Scholar

[28] A. N. Al-Khazraji, S. A. Amin, and S. M. Ali: Journal of Solid Mechanics Vol. 10,2 (2018), p.338.

Google Scholar

[29] ASTM A370: Standard Test Method and Definitions for Mechanical Testing of Steel Products (American Society for Testing and Materials, Washington, D.C. 1977).

Google Scholar

[30] ASTM A681, Standard Specification for Tool Steels Alloy (American Society for Testing and Materials, Washington, D.C. 1976).

Google Scholar

[31] V. Yadav, V. K. Jain, and P. M. Dixit: International Journal of Machine Tools and Manufacture Vol. 42 (2002), p.877.

Google Scholar

[32] D. Shuvra, K. Mathias and F. Klocke: Journal of Materials Processing Technology Vol. 142 (2003), p.434.

Google Scholar

[33] D. D. Dibitonto, P. T. Eubank, M. R. Patel and M. A. Barrufet: Journal of Applied Physics Vol. 66 (1989), p.4095.

Google Scholar

[34] R. Bhattacharya, V. K. Jain and P. S. Ghoshdastidar: IE (I) Journal-PR Vol. 77 (1996), p.13.

Google Scholar

[35] H. P. Schulze, R. Herms, H. Juhr, W. Schaetzing and G. Wollenberg: Journal of Materials Processing Technology Vol. 149 (2004), p.316.

DOI: 10.1016/j.jmatprotec.2004.02.016

Google Scholar

[36] J. Marafona and J. A. Chousal: International Journal of Machine Tools and Manufacture Vol. 46 (2006), p.595.

Google Scholar

[37] ISO 3297, Certified Organization: International Journal of Innovative Research in Science, Engineering and Technology Vol. 3, 2 (2014).

Google Scholar

[38] S. M. Ali: 2nd International Conference on Engineering Technology and its Applications, IEEE Xplore, (2020), p.1.

Google Scholar

[39] J. Singh and P. M. Pandey: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Vol. 234, 1 (2020), p.66.

Google Scholar

[40] B. Raymond and A. Hancq: Calculating and Displaying Fatigue Results-The ANSYS Fatigue Module (New Technologies, ANSYS Inc. 2006).

Google Scholar

[41] J. E. Shigley and C. R. Mischke: Mechanical Engineering Design (McGraw-Hill Inc. 8th ed. 2006).

Google Scholar