[1]
A. Ahamed, T. Prashanth, Mechanical Property Evaluation Aluminium 6061 Nickel Composites, Mechanics and Mechanical Engineering 22 (2018) p.1381–1388. https://doi.org/10.2478/mme-2018-0108.
DOI: 10.2478/mme-2018-0108
Google Scholar
[2]
S. E. Salih, S. M. Al-Saffar, and S. M. Darkhan, Effect of Fly and Dust Ash Additions on Hardness and Wear Resistance of Composite Metal Matrix (Al-Si-Mg), Eng. & Tech. Journal (2011) Vol.29, No.16.
Google Scholar
[3]
S.A. Sajjadi, H.R. Ezatpour, and H. Beygi, Comparison of Microstructure and Mechanical Properties of A356 Aluminum alloy/Al2O3 Composites Fabricated by Stir and Compo-casting Process, Materials and design 24 (2012) pp.106-111.
DOI: 10.1016/j.matdes.2011.07.037
Google Scholar
[4]
K.V. Shivananda Murthy, D.P. Girisha, R. Keshavamurthy, T. Varol, and P.G. Koppad, Mechanical and Thermal Properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Progress in Natural Science: Materials International 27 (2017) p.474–481.
DOI: 10.1016/j.pnsc.2017.08.005
Google Scholar
[5]
V. Kumar, R. D. Gupta, N. K. Batra, Comparison of Mechanical Properties and effect of Sliding Velocity on Wear Properties of Al 6061, Mg 4%, Fly Ash and Al 6061, Mg 4%, Graphite 4%, Fly ash Hybrid Metal matrix composite, Procedia Materials Science 6 (2014) p.1365 – 1375.
DOI: 10.1016/j.mspro.2014.07.116
Google Scholar
[6]
M. Nagaral, V. Auradi and M. K. Ravishankar, Mechanical Behaviour of Aluminium 6061 Alloy Reinforced With Al2O3 & Graphite Particulate Hybrid Metal Matrix Composites, International Journal of Research in Engineering & Technology (IJRET), (2013), Vol. 1, Issue 2, pp.193-198.
Google Scholar
[7]
G.B. Kumar, C.S.P. Rao, N.Selvaraj, and M.S. Bhagyashekar, Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites, Journal of Minerals and Characterization & Engineering, 19 (2010) pp.43-55.
DOI: 10.4236/jmmce.2010.91004
Google Scholar
[8]
P. K. Rohatgi, B. F. Schultz, A. Daoud, and W. W. Zhang, Tribological Performance of A 206 Aluminium Alloy Containing Silica and Particles, Tribology International 43 (2010) pp.455-466.
DOI: 10.1016/j.triboint.2009.07.010
Google Scholar
[9]
M. Abdulwahab, R.M. Dodo, I.Y. Suleiman, A.I. Gebi, I. Umar, Wear behavior of Al-7%Si-0.3%Mg/ Melon Shell Ash Particulate Composites, Heliyon, (2017), Vol.3, e00375. doi: 10.1016/ j.heliyon.2017.e00375.
DOI: 10.1016/j.heliyon.2017.e00375
Google Scholar
[10]
V. R. Rao, N. Ramanaiah, and M.M.M. Sarcar, Dry Sliding Wear Behavior of TiC –AA7075 Metal Matrix Composites, International Journal of Applied Science and Engineering, (2016), Vol. 14, 1: 27-37.
Google Scholar
[11]
R. D. Manikond, M. B. S. Reddy, and A. Raj, Wear Characteristics Investigations of AA2014-SiC Under Dry Sliding Conditions, Journal of Critical Reviews 7 (2020) Issue 9.
DOI: 10.31838/jcr.07.09.155
Google Scholar
[12]
N. Jeyaprakash, C.-H. Yang, M. Duraiselvam, G. Prabuc, S.-P. Tseng, and D. R. Kumar, Investigation of High Temperature Wear Performance on Laser Processed Nodular Iron Using Optimization Technique, Results in Physics 15 (2019) 102585.
DOI: 10.1016/j.rinp.2019.102585
Google Scholar
[13]
J. Singh and A. Chauhan, A review of Microstructure, Mechanical Properties and Wear Behavior of Hybrid Aluminium Matrix Composites Fabricated via Stir Casting Route, Sadhana, (2019) 44:16. https://doi.org/10.1007/s12046-018-1025-5.
DOI: 10.1007/s12046-018-1025-5
Google Scholar
[14]
G. Elango and B.K. Raghunath, Tribological Behavior of Hybrid (LM25Al + SiC+ TiO2) Metal Matrix Composites, Procedia Engineering 64 (2013) p.671 – 680.
DOI: 10.1016/j.proeng.2013.09.142
Google Scholar
[15]
W. D. Callister, Materials Science and Engineering ,, Third edition, John Wiley and Sons, Inc, (1994) 131.
Google Scholar
[16]
H.C. Anilkumar, H.S. Hebbar and K.S. Ravishankar, Mechanical Properties of Fly Ash Reinforced Aluminium Alloy (Al6061) Composites, International Journal of Mechanical and Materials Engineering 6 (2011) pp.41-45.
Google Scholar
[17]
A. Canakci and F. Arslan, Abrasive Wear Behaviour of B4C Particle Reinforced Al2024 MMCs, Int J Adv Manuf Technol, (2012). DOI 10.1007/s00170-012-3931-8.
DOI: 10.1007/s00170-012-3931-8
Google Scholar
[18]
M. Kök, Abrasive Wear of Al2O3 Particle Reinforced 2024 Aluminium Alloy Composites Fabricated by Vortex Method, Composites A37, (2006), p.457–464.
DOI: 10.1016/j.compositesa.2005.05.038
Google Scholar
[19]
R. Ipek, Adhesive Wear Behaviour of B4C and SiC Reinforced 4147 Al Matrix Composites (Al/B4C–Al/SiC), Journal of Materials Processing Technology (2005) p.162–163.
DOI: 10.1016/j.jmatprotec.2005.02.207
Google Scholar
[20]
S. Basavarajappa and G. Chandramohan, Wear Studies on Metal Matrix Composites-Taguchi Approach, Journal of Material Science and Technology 21 (2005) pp.845-850.
Google Scholar
[21]
D.A. Rigney, Fundamentals of Friction and Wear of Materials, American Society for metals, Book, Ohio, (1981).
Google Scholar
[22]
B.V. Subrahmanyam, S.V. Krishna, Ch.L. Pornima, and A. Rao, Evaluation of the Mechanical Properties on Aluminium Alloy 2024 -Fly Ash Metal Matrix Composite, International Journal of Advanced Mechanical Engineering, 8 (2018) pp.1-11. http://www.ripublication.com.
Google Scholar
[23]
A. Vencl, I. Bobi, and Mijsokoviz, Effect of Thixocasting and Heat Treatment on the Tribological Properties of Al-Si alloy, Wear 246 (2008) p.616.
DOI: 10.1016/j.wear.2007.05.011
Google Scholar
[24]
K.V. Mahendra, and K. Radhakrishn, Fabrication of Al-4.5% Cu Alloy with Fly Ash MMC and its Characterization, Material science Poland, 25 (2007) pp.57-68.
Google Scholar
[25]
R. A. Salman1, S. A. Ajeel, and N. K. Zedin, Influence of Sulphate and Chlorides Acidic Media on Mechanical and Corrosion Behavior of Fly Ash Particulate Reinforced 2024 Al/TiO2 Composites, IOP Conf. Series: Materials Science and Engineering, 671 (2020) 012153.
DOI: 10.1088/1757-899x/671/1/012153
Google Scholar
[26]
D. R. Askeland and P. P.Fulay, Essentials of Materials Science and Engineering, Second Edition, Book, Pub Cengage Learning (2010).
Google Scholar
[27]
P. Samal, R.K. Mandava and P.R. Vundavilli, Dry Sliding Wear Behavior of Al 6082 Metal Matrix Composites Reinforced with Red Mud Particles. SN Applied Sciences, (2020), 2:313 | https://doi.org/10.1007/s42452-020-2136-2.
DOI: 10.1007/s42452-020-2136-2
Google Scholar
[28]
D. Ramesh, R. P. Swamy and T. K. Chandrashekar, Effect of Weight Percentage on Mechanical Properties of Frit Particulate Reinforced Al6061 Composite, ARPN Journal of Engineering and Applied Sciences. 5 (2010) 32-36.
Google Scholar