Effect Multiple Addition (TiO2 and Fly Ash) on Wear Behavior and Hardness of 2024 Al Alloy

Article Preview

Abstract:

This research is devoted to study the effect of addition (2%) TiO2 with different weight percent of fly ash particulate (0, 2, 4, 6%) to 2024 Al alloy on the wear behavior and hardness. The alloy was fabricated by the liquid metallurgy method. The results founds that the wear rate decreased from 0.55 with 0% fly ash to 0.18 at addition percentage of 6% fly ash. Also, the results reveal increasing the samples wear rate with increasing the load and loaded time. The rate of wear was decreased with increasing the sliding speed. Also, the values of hardness increased from 120VH to 160VH with rising the fly ash from 0% to 6%. Keywords: Fly Ash addition, TiO2, 2024 Al Alloy, Wear Resistance, Hardness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

201-208

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ahamed, T. Prashanth, Mechanical Property Evaluation Aluminium 6061 Nickel Composites, Mechanics and Mechanical Engineering 22 (2018) p.1381–1388. https://doi.org/10.2478/mme-2018-0108.

DOI: 10.2478/mme-2018-0108

Google Scholar

[2] S. E. Salih, S. M. Al-Saffar, and S. M. Darkhan, Effect of Fly and Dust Ash Additions on Hardness and Wear Resistance of Composite Metal Matrix (Al-Si-Mg), Eng. & Tech. Journal (2011) Vol.29, No.16.

Google Scholar

[3] S.A. Sajjadi, H.R. Ezatpour, and H. Beygi, Comparison of Microstructure and Mechanical Properties of A356 Aluminum alloy/Al2O3 Composites Fabricated by Stir and Compo-casting Process, Materials and design 24 (2012) pp.106-111.

DOI: 10.1016/j.matdes.2011.07.037

Google Scholar

[4] K.V. Shivananda Murthy, D.P. Girisha, R. Keshavamurthy, T. Varol, and P.G. Koppad, Mechanical and Thermal Properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Progress in Natural Science: Materials International 27 (2017) p.474–481.

DOI: 10.1016/j.pnsc.2017.08.005

Google Scholar

[5] V. Kumar, R. D. Gupta, N. K. Batra, Comparison of Mechanical Properties and effect of Sliding Velocity on Wear Properties of Al 6061, Mg 4%, Fly Ash and Al 6061, Mg 4%, Graphite 4%, Fly ash Hybrid Metal matrix composite, Procedia Materials Science 6 (2014) p.1365 – 1375.

DOI: 10.1016/j.mspro.2014.07.116

Google Scholar

[6] M. Nagaral, V. Auradi and M. K. Ravishankar, Mechanical Behaviour of Aluminium 6061 Alloy Reinforced With Al2O3 & Graphite Particulate Hybrid Metal Matrix Composites, International Journal of Research in Engineering & Technology (IJRET), (2013), Vol. 1, Issue 2, pp.193-198.

Google Scholar

[7] G.B. Kumar, C.S.P. Rao, N.Selvaraj, and M.S. Bhagyashekar, Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites, Journal of Minerals and Characterization & Engineering, 19 (2010) pp.43-55.

DOI: 10.4236/jmmce.2010.91004

Google Scholar

[8] P. K. Rohatgi, B. F. Schultz, A. Daoud, and W. W. Zhang, Tribological Performance of A 206 Aluminium Alloy Containing Silica and Particles, Tribology International 43 (2010) pp.455-466.

DOI: 10.1016/j.triboint.2009.07.010

Google Scholar

[9] M. Abdulwahab, R.M. Dodo, I.Y. Suleiman, A.I. Gebi, I. Umar, Wear behavior of Al-7%Si-0.3%Mg/ Melon Shell Ash Particulate Composites, Heliyon, (2017), Vol.3, e00375. doi: 10.1016/ j.heliyon.2017.e00375.

DOI: 10.1016/j.heliyon.2017.e00375

Google Scholar

[10] V. R. Rao, N. Ramanaiah, and M.M.M. Sarcar, Dry Sliding Wear Behavior of TiC –AA7075 Metal Matrix Composites, International Journal of Applied Science and Engineering, (2016), Vol. 14, 1: 27-37.

Google Scholar

[11] R. D. Manikond, M. B. S. Reddy, and A. Raj, Wear Characteristics Investigations of AA2014-SiC Under Dry Sliding Conditions, Journal of Critical Reviews 7 (2020) Issue 9.

DOI: 10.31838/jcr.07.09.155

Google Scholar

[12] N. Jeyaprakash, C.-H. Yang, M. Duraiselvam, G. Prabuc, S.-P. Tseng, and D. R. Kumar, Investigation of High Temperature Wear Performance on Laser Processed Nodular Iron Using Optimization Technique, Results in Physics 15 (2019) 102585.

DOI: 10.1016/j.rinp.2019.102585

Google Scholar

[13] J. Singh and A. Chauhan, A review of Microstructure, Mechanical Properties and Wear Behavior of Hybrid Aluminium Matrix Composites Fabricated via Stir Casting Route, Sadhana, (2019) 44:16. https://doi.org/10.1007/s12046-018-1025-5.

DOI: 10.1007/s12046-018-1025-5

Google Scholar

[14] G. Elango and B.K. Raghunath, Tribological Behavior of Hybrid (LM25Al + SiC+ TiO2) Metal Matrix Composites, Procedia Engineering 64 (2013) p.671 – 680.

DOI: 10.1016/j.proeng.2013.09.142

Google Scholar

[15] W. D. Callister, Materials Science and Engineering ,, Third edition, John Wiley and Sons, Inc, (1994) 131.

Google Scholar

[16] H.C. Anilkumar, H.S. Hebbar and K.S. Ravishankar, Mechanical Properties of Fly Ash Reinforced Aluminium Alloy (Al6061) Composites, International Journal of Mechanical and Materials Engineering 6 (2011) pp.41-45.

Google Scholar

[17] A. Canakci and F. Arslan, Abrasive Wear Behaviour of B4C Particle Reinforced Al2024 MMCs, Int J Adv Manuf Technol, (2012). DOI 10.1007/s00170-012-3931-8.

DOI: 10.1007/s00170-012-3931-8

Google Scholar

[18] M. Kök, Abrasive Wear of Al2O3 Particle Reinforced 2024 Aluminium Alloy Composites Fabricated by Vortex Method, Composites A37, (2006), p.457–464.

DOI: 10.1016/j.compositesa.2005.05.038

Google Scholar

[19] R. Ipek, Adhesive Wear Behaviour of B4C and SiC Reinforced 4147 Al Matrix Composites (Al/B4C–Al/SiC), Journal of Materials Processing Technology (2005) p.162–163.

DOI: 10.1016/j.jmatprotec.2005.02.207

Google Scholar

[20] S. Basavarajappa and G. Chandramohan, Wear Studies on Metal Matrix Composites-Taguchi Approach, Journal of Material Science and Technology 21 (2005) pp.845-850.

Google Scholar

[21] D.A. Rigney, Fundamentals of Friction and Wear of Materials, American Society for metals, Book, Ohio, (1981).

Google Scholar

[22] B.V. Subrahmanyam, S.V. Krishna, Ch.L. Pornima, and A. Rao, Evaluation of the Mechanical Properties on Aluminium Alloy 2024 -Fly Ash Metal Matrix Composite, International Journal of Advanced Mechanical Engineering, 8 (2018) pp.1-11. http://www.ripublication.com.

Google Scholar

[23] A. Vencl, I. Bobi, and Mijsokoviz, Effect of Thixocasting and Heat Treatment on the Tribological Properties of Al-Si alloy, Wear 246 (2008) p.616.

DOI: 10.1016/j.wear.2007.05.011

Google Scholar

[24] K.V. Mahendra, and K. Radhakrishn, Fabrication of Al-4.5% Cu Alloy with Fly Ash MMC and its Characterization, Material science Poland, 25 (2007) pp.57-68.

Google Scholar

[25] R. A. Salman1, S. A. Ajeel, and N. K. Zedin, Influence of Sulphate and Chlorides Acidic Media on Mechanical and Corrosion Behavior of Fly Ash Particulate Reinforced 2024 Al/TiO2 Composites, IOP Conf. Series: Materials Science and Engineering, 671 (2020) 012153.

DOI: 10.1088/1757-899x/671/1/012153

Google Scholar

[26] D. R. Askeland and P. P.Fulay, Essentials of Materials Science and Engineering, Second Edition, Book, Pub Cengage Learning (2010).

Google Scholar

[27] P. Samal, R.K. Mandava and P.R. Vundavilli, Dry Sliding Wear Behavior of Al 6082 Metal Matrix Composites Reinforced with Red Mud Particles. SN Applied Sciences, (2020), 2:313 | https://doi.org/10.1007/s42452-020-2136-2.

DOI: 10.1007/s42452-020-2136-2

Google Scholar

[28] D. Ramesh, R. P. Swamy and T. K. Chandrashekar, Effect of Weight Percentage on Mechanical Properties of Frit Particulate Reinforced Al6061 Composite, ARPN Journal of Engineering and Applied Sciences. 5 (2010) 32-36.

Google Scholar