Enhancing Thermal Properties of Steam Turbine Blades by Coating with Nanomaterials

Article Preview

Abstract:

Heat resistant coatings are considered for the external surface Low-Pressure Steam Turbines (LPST). 410 stainless steel covered with nano heat resistant coatings consists of a heat resistant connecting layer enhanced by nanoparticles. A commercial paint was modified by using 20%wt of (titanium dioxide (TiO2) - aluminum oxide (Al2O3)) with different concentrations range (25,50,75wt% of TiO2) layers. These nano-coatings paints were airbrushed onto the surface of specimens of steam turbine blades. The test rig and experimental apparatus have been fabricated and collected to accomplish the thermal tests. The samples were subjected to heat resistance and a temperature test approximately similar to the steam turbine's operation condition temperature. The test results are used to choose the nano-coating layer with a concentration that ensures a composition's highest protective properties. The test sample with concentration (paint-(75% Al2O3+25% TiO2)) showed the highest thermal properties compares with the other cases.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

281-296

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Saito, A. Sakuma, and M. Fukuda, Recent life assessment technology for existing steam turbines,, 11th Int. Conf. Fract. 2005, ICF11, vol. 4, p.3167–3172, (2005).

DOI: 10.1115/pwr2005-50345

Google Scholar

[2] D. Ziegler, M. Puccinelli, B. Bergallo, and A. Picasso, Investigation of turbine blade failure in a thermal power plant,, Case Stud. Eng. Fail. Anal., vol. 1, no. 3, p.192–199, 2013,.

DOI: 10.1016/j.csefa.2013.07.002

Google Scholar

[3] O. Jonas and L. Machemer, STEAM TURBINE CORROSION AND DEPOSITS PROBLEMS AND SOLUTIONS by,, (1983).

Google Scholar

[4] A. A. Ugla, M. I. Hasan, Z. A. Ibrahim, D. J. Kamil, and H. J. Khudair, Effects of Nano Coating on the Mechanical Properties of Turbine Blades : A Review,, vol. 44, no. 4, p.134–144, (2021).

Google Scholar

[5] E. Kosieniak, K. Biesiada, J. Kaczorowski, and M. Innocenti, Corrosion Failures in Gas Turbine Hot Components,, p.330–337, 2012,.

DOI: 10.1007/s11668-012-9571-3

Google Scholar

[6] G. W. Goward, Progress in coatings for gas turbine airfoils,, vol. 109, p.73–79, (1998).

DOI: 10.1016/s0257-8972(98)00667-7

Google Scholar

[7] R. A. Rapp and Y. S. Zhang, Hot Corrosion of Materials : Fundamental Studies,, p.47–55.

Google Scholar

[8] M. Bogdan and D. Zasada, Józef Błachnio Mariusz Bogdan Dariusz Zasada Increased temperature impact on durability of gas turbine blades Wpływ podwyższonej temperatury na trwałość łopatek turbiny gazowej *,, vol. 19, no. 1, p.48–53, (2017).

DOI: 10.17531/ein.2017.1.7

Google Scholar

[9] N. Asok Kumar and S. R. Kale, Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade,, Int. J. Heat Mass Transf., vol. 45, no. 24, p.4831–4845, 2002,.

DOI: 10.1016/s0017-9310(02)00190-4

Google Scholar

[10] Y. Gao, J. Gao, and D. Yang, Equiaxed and porous thermal barrier coatings deposited by atmospheric plasma spray using a nanoparticles powder,, Adv. Eng. Mater., vol. 16, no. 4, p.406–412, 2014,.

DOI: 10.1002/adem.201300284

Google Scholar

[11] Y. Fedorova et al., NU SC,, Surf. Coat. Technol., 2015,.

Google Scholar

[12] J. H. Liu, Y. B. Liu, X. He, and L. Liu, Study on TBCs insulation characteristics of a turbine blade under serving conditions,, Case Stud. Therm. Eng., vol. 8, p.250–259, 2016,.

DOI: 10.1016/j.csite.2016.08.004

Google Scholar

[13] A. C. Joshi, A. L. Rufus, S. Suresh, P. Chandramohan, S. Rangarajan, and S. Velmurugan, Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants,, J. Nucl. Mater., vol. 437, no. 1–3, p.139–148, 2013,.

DOI: 10.1016/j.jnucmat.2013.01.353

Google Scholar

[14] N. Gat and O. Systems, DocuServe,, no. July 1980, 2016,.

Google Scholar

[15] A. Hamed, Temperature Effect on Particle Dynamics and Erosion in Radial,, vol. 110, no. April 1988, (2017).

Google Scholar

[16] V. Shanov, W. Tabakoff, and R. N. Singh, CVD Diamond Coating for Erosion Protection at Elevated Temperatures,, vol. 11, no. April, p.220–225, (2002).

DOI: 10.1361/105994902770344303

Google Scholar

[17] J. A. R. Babu, K. K. Kumar, and S. S. Rao, State-of-art review on hybrid nanofluids State-of-art review on hybrid nano fl uids,, Renew. Sustain. Energy Rev., vol. 77, no. October, p.551–565, 2017, [Online]. Available: http://dx.doi.org/10.1016/j.rser.2017.04.040.

DOI: 10.1016/j.rser.2017.04.040

Google Scholar

[18] M. Liu, M. C. Lin, I. Huang, and C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids B,, vol. 32, p.1202–1210, 2005,.

Google Scholar

[19] N. A. Che Sidik, I. M. Adamu, and M. Mahmud Jamil, Preparation Methods and Thermal Performance of Hybrid Nanofluids,, J. Adv. Res. Appl. Mech., vol. 66, no. 1, p.7–16, 2020,.

DOI: 10.37934/aram.66.1.716

Google Scholar

[20] W. Yu and H. Xie, A review on nanofluids: Preparation, stability mechanisms, and applications,, J. Nanomater., vol. 2012, 2012,.

Google Scholar

[21] K. A. S. Al-saadie and H. A. Y. Al-mashhdani, Corrosion Protection Study for Caron Steel in Seawater by Coating with SiC and ZrO 2 Nanoparticles,, vol. 5, no. 1, p.28–39, 2015,.

Google Scholar