The Effect of Ethanol Solvent on Characterization of MAPbI3 Perovskite

Article Preview

Abstract:

Methyl ammonium lead iodide CH3NH3PbI3 Perovskite was synthesized by a new method mixing between one and two steps, in addition, the ethanol solvent was used to dissolve CH3NH3I and compared with isopropanol solvent. The characterizations of synthesized perovskite samples included the structural properties, morphological characteristics and optical properties. The intensity and orientation in X-ray diffraction patterns appear clearly in ethanol solvent while disappearing at a peak at 12o due to the speed reaction of perovskite in this solvent. Additionally, the ethanol solvent increasing the grain size of perovskite which homogeneity of the surface morphology. the ethanol solvent cause a decrease in the wavelength of absorbance edge in addition to an increase in the energy bandgap value. Keywords: Ethanol Solvent, Perovskite, Photovoltaic Technologies, X-ray diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

307-312

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta Crystallographica Section B: Structural Science, (2008) 64(6), 702-707.

DOI: 10.1107/s0108768108032734

Google Scholar

[2] Baron, A. S. Synthesis and Characterization of methyl ammonium lead tri halide Perovskite Compounds and their Applications in Photonic Devices. University of Basrah (2019). (Doctoral dissertation, University of Basrah).

Google Scholar

[3] He, T., Huang, Q., Ramirez, A. P., Wang, Y., Regan, K. A., Rogado, N., ... & Cava, R. J. Superconductivity in the non-oxide perovskite MgCNi 3. Nature, (2001). 411(6833), 54-56.

DOI: 10.1038/35075014

Google Scholar

[4] Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., ... & Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, (2014). 136(2), 622-625.

DOI: 10.1021/ja411509g

Google Scholar

[5] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, (2013). 499(7458), 316-319.

DOI: 10.1038/nature12340

Google Scholar

[6] Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., ... & Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, (2014). 7(1), 399-407.

DOI: 10.1039/c3ee43161d

Google Scholar

[7] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, (2011). 3(10), 4088-4093.

DOI: 10.1039/c1nr10867k

Google Scholar

[8] Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., ... & White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, (2013). 1(18), 5628-5641.

DOI: 10.1039/c3ta10518k

Google Scholar

[9] Ahmed, D. S., & Mohammed, M. K. Novel mixed solution of ethanol/MACl for improving the crystallinity of air-processed triple cation perovskite solar cells. Solar Energy, (2020). 207, 1240-1246.

DOI: 10.1016/j.solener.2020.07.039

Google Scholar

[10] Wang, K., Liu, C., Du, P., Zhang, H. L., & Gong, X. Efficient Perovskite Hybrid Solar Cells Through a Homogeneous High‐Quality Organolead Iodide Layer. Small, (2015). 11(27), 3369-3376.

DOI: 10.1002/smll.201403399

Google Scholar

[11] Zhang, Y., Du, J., Wu, X., Zhang, G., Chu, Y., Liu, D., ... & Huang, J. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS applied materials & interfaces, (2015). 7(39), 21634-21638.

DOI: 10.1021/acsami.5b05221

Google Scholar

[12] Banerjee, R., Jayakrishnan, R., & Ayyub, P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. Journal of Physics: Condensed Matter, (2000). 12(50), 10647.

DOI: 10.1088/0953-8984/12/50/325

Google Scholar

[13] Chuu, D. S., & Dai, C. M. Quantum size effects in CdS thin films. Physical Review B, (1992). 45(20), 11805.

DOI: 10.1103/physrevb.45.11805

Google Scholar

[14] Ke, W., Fang, G., Wang, J., Qin, P., Tao, H., Lei, H., ... & Zhao, X. Perovskite solar cell with an efficient TiO2 compact film. ACS applied materials & interfaces, (2014). 6(18), 15959-15965.

DOI: 10.1021/am503728d

Google Scholar