[1]
Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. Formability of ABX3 (X= F, Cl, Br, I) Halide Perovskites. Acta Crystallographica Section B: Structural Science, (2008) 64(6), 702-707.
DOI: 10.1107/s0108768108032734
Google Scholar
[2]
Baron, A. S. Synthesis and Characterization of methyl ammonium lead tri halide Perovskite Compounds and their Applications in Photonic Devices. University of Basrah (2019). (Doctoral dissertation, University of Basrah).
Google Scholar
[3]
He, T., Huang, Q., Ramirez, A. P., Wang, Y., Regan, K. A., Rogado, N., ... & Cava, R. J. Superconductivity in the non-oxide perovskite MgCNi 3. Nature, (2001). 411(6833), 54-56.
DOI: 10.1038/35075014
Google Scholar
[4]
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H., ... & Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, (2014). 136(2), 622-625.
DOI: 10.1021/ja411509g
Google Scholar
[5]
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, (2013). 499(7458), 316-319.
DOI: 10.1038/nature12340
Google Scholar
[6]
Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., ... & Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, (2014). 7(1), 399-407.
DOI: 10.1039/c3ee43161d
Google Scholar
[7]
Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, (2011). 3(10), 4088-4093.
DOI: 10.1039/c1nr10867k
Google Scholar
[8]
Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., ... & White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, (2013). 1(18), 5628-5641.
DOI: 10.1039/c3ta10518k
Google Scholar
[9]
Ahmed, D. S., & Mohammed, M. K. Novel mixed solution of ethanol/MACl for improving the crystallinity of air-processed triple cation perovskite solar cells. Solar Energy, (2020). 207, 1240-1246.
DOI: 10.1016/j.solener.2020.07.039
Google Scholar
[10]
Wang, K., Liu, C., Du, P., Zhang, H. L., & Gong, X. Efficient Perovskite Hybrid Solar Cells Through a Homogeneous High‐Quality Organolead Iodide Layer. Small, (2015). 11(27), 3369-3376.
DOI: 10.1002/smll.201403399
Google Scholar
[11]
Zhang, Y., Du, J., Wu, X., Zhang, G., Chu, Y., Liu, D., ... & Huang, J. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS applied materials & interfaces, (2015). 7(39), 21634-21638.
DOI: 10.1021/acsami.5b05221
Google Scholar
[12]
Banerjee, R., Jayakrishnan, R., & Ayyub, P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. Journal of Physics: Condensed Matter, (2000). 12(50), 10647.
DOI: 10.1088/0953-8984/12/50/325
Google Scholar
[13]
Chuu, D. S., & Dai, C. M. Quantum size effects in CdS thin films. Physical Review B, (1992). 45(20), 11805.
DOI: 10.1103/physrevb.45.11805
Google Scholar
[14]
Ke, W., Fang, G., Wang, J., Qin, P., Tao, H., Lei, H., ... & Zhao, X. Perovskite solar cell with an efficient TiO2 compact film. ACS applied materials & interfaces, (2014). 6(18), 15959-15965.
DOI: 10.1021/am503728d
Google Scholar