Optical Properties of Non-Crystalline Fluorine Doped Hematite Fe2O3 Thin Films Deposited by Chemical Spray Pyrolysis Technique

Article Preview

Abstract:

By using the spray pyrolysis technique, un-doped and Fluorine highly doped iron oxide Fe2O3 thin films were deposited on a glass substrate at a temperature of 380 oC and at different dopant concentrations (10, 15, and 20) %. The crystal structure and optical characterization of the deposited thin film were performed by x-ray diffraction and UV-Vis spectrophotometer. The XRD results revealed that the presence of a very wide peak in-between (15-35) o angles, this gives evidence that un-doped and F-doped Fe2O3 thin films have very low crystallinity and amorphous structures. The optical absorbance edge was shifted towards short wavelengths (blue shift) and the absorbance was reduced with the increase of Fluorine dopant content. The optical constants such as absorption, extinction coefficients, and the optical conductivity of the deposition films were investigated as a function of dopant content. The optical energy band gap of un-doped and Fe2O3:F thin films was found to be increased when increasing of the Fluorine content and exhibited a direct allowed energy gap (Eg) from (2.55 to 2.7) eV which can related to the Burstein-Moss effect.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

332-339

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.N. Goyal, D. Kaur, A. K. Pandey,Materials Chemistry and Physics, 116, 638–644 (2009).

Google Scholar

[2] M.A. Garcia-Lobato, A.I. Martinez, M.Castro-Roman, C.Falcony and L.Escobar-Alarcon", Physica B, 406 , 1496–1500 (2011).

DOI: 10.1016/j.physb.2011.01.056

Google Scholar

[3] M.A. Garcia-Lobato, A.I. Martinez, D.L. Perry, M. Castro-Roman, R.A. Zarate and L.Escobar-Alarcon, Solar Energy Materials & Solar Cells, 95, 751–758 (2011).

DOI: 10.1016/j.solmat.2010.10.017

Google Scholar

[4] J.D. Desai, H.M. Pathan, S.K. Min, Kwang-Deog Jung and Oh-Shim Joo, Applied Surface Science, 252, 2251–2258 (2006).

Google Scholar

[5] M. Chirita, and I. Grozescu, Chem. Bull. POLITEHNICA, Univ. (Timisoara), 54(68), 1-8, (2009).

Google Scholar

[6] J.D. Desai, H.M. Pathan, S.K. Min, Kwang-Deog Jung and Oh-Shim Joo, Applied Surface Science, 252 ,8039–8042 ((2006).

Google Scholar

[7] A.A. Akl, Applied Surface Science ,256 ,7496-7503 (2010).

Google Scholar

[8] B. Ouertani, J. Ouerfelli, M. Saadoun, H. Ezzaouia and B. Bessaïs, Thin Solid Films, 516, 8584-8586 (2008).

DOI: 10.1016/j.tsf.2008.06.015

Google Scholar

[9] A.Z. Moshfegh, R. Azimirad and O. Akhavan, Thin Solid Films, 484, 124 – 131(2005).

DOI: 10.1016/j.tsf.2005.02.019

Google Scholar

[10] T. Tepper and C. A. Ross, J. Appl. Phys., 91(7), 4453-4456 (2002).

Google Scholar

[11] Y. Gao, Y.J. Kim, S. Thevuthasan, S.A. Chambers, and P. Lubitz, J. Appl. Phys. 81(7), 3253-3256 (1997);.

Google Scholar

[12] L. Ji, K. Harbauer, P. Bogdanoff, K. Ellmer and S. Fiechter, Journal of Materials Science & Technology, 31, 655-659 (2015(.

DOI: 10.1016/j.jmst.2014.10.007

Google Scholar

[13] U. Khan, A. Akbar, H. Yousaf, S. Riaz and S. Naseem, Materials Today: Proceedings, 2, 5415-5420 (2015).

DOI: 10.1016/j.matpr.2015.11.061

Google Scholar

[14] Hayoung Choi, Yaejin Hong, Hyukhyun Ryu and Won-Jae Lee, Photoelectrochemical properties of hematite thin films grown by MW-CBD, Surface and Coating Technology, 33, 259-266, (2018).

DOI: 10.1016/j.surfcoat.2017.11.018

Google Scholar

[15] M.R. Belkhedkar, A.U. Ubale, Y.S. Sakhare, Naushad Zubair, M. Musaddique, Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorptionand reaction method, Journal of the Association of Arab Universities for Basic and Applied Sciences 21, 38–44, (2016).

DOI: 10.1016/j.jaubas.2015.03.001

Google Scholar

[16] M.García-Lobato, A. Hernández-V, H. M. Hdz-García, A. I. Martinez and M.I. Pech-Canul., Materials Science Forum, 644, 105–108(2010).

DOI: 10.4028/www.scientific.net/msf.644.105

Google Scholar

[17] A.A. Akl, Applied Surface Science, 221, 319–329, (2004).

Google Scholar

[18] X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang and S. Dong, Journal of Nanoparticle Research, 2 ,191–198, (2000).

Google Scholar

[19] A.A. Tahir, K.G. Upul Wijayantha, S. Saremi-Yarahmadi, M.Mazhar, and V. McKee, Chem. Mater, 21, 3763–3772 ( 2009).

DOI: 10.1021/cm803510v

Google Scholar

[20] A.H. Omran.Alkhayatt, Al- Qadisyah Journal for Science, 14(2), 76-88 (2009).

Google Scholar

[21] A.H. Omran and S.K. Hussian, Journal of Kufa- Physics, 5(1), 69-78 (2013).

Google Scholar

[22] S.A. Hussain, A.H. Omran Al- lkhayatt and E.A. Mahdi, IOSR Journal of Applied Physics (IOSR-JAP), 8 (5) Ver. I 44-49 (2016).

Google Scholar

[23] A.F. Qasrawi and A.A. Hamamdah., Microw. Opt. Technol. Lett., 62(4),1453-1458 (2020).

Google Scholar

[24] N.F.Al.Shammary, J. Kufa-Phys., 2,22–27 (2010).

Google Scholar

[25] F.Souza, K.P. Lopes, P.A.P. Nascente and E.R. Leite, Solar Energy Materials & Solar Cells, 93, 362–368 (2009).

DOI: 10.1016/j.solmat.2008.11.049

Google Scholar

[26] G.M. Hussein Al-Haddad,Structural and Some Optical Characteristics of Sol-Gel Coated Nanocrystalline CdS: F Thin Film,, MSc. Thesis, College of Science, Kufa Univercity, (2016).

Google Scholar

[27] A. H. Omran Alkhayatta and S. K. Hussian, Surfaces and Interfaces 81,76–181 (2017).

Google Scholar

[28] L. Dghoughi, B. Elidrissi, C. Berne`de, M. Addou, M. Alaoui Lamrani, M. Regragui and H. Erguig, Applied Surface Science, 253,1823–1829 (2006).

DOI: 10.1016/j.apsusc.2006.03.021

Google Scholar