[1]
I. S. Elashmawi, A.A Menazea, Different time's Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. Journal of materials researchand technology. 8(4), 1944–1951(2019). https://doi.org/10.1016/j.jmrt.2019.01.011.
DOI: 10.1016/j.jmrt.2019.01.011
Google Scholar
[2]
M. Makled, E. Sheha, T.S. Soliman, M.K.El-Mansy, Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite. Journal of advanced research 4(6):531–538 (2013).
DOI: 10.1016/j.jare.2012.09.007
Google Scholar
[3]
A. Novruzova, A.M, Ramazanov. A. Chianese, F.V. Hajiyeva, A. Maharramov, U. Hasanova, Synthesis,structure and optical properties of pp+pbs/cds hybrid nanocomposites. Chemical Engineering Transactions. 60:61-66(2017).
DOI: 10.1080/10584587.2019.1668690
Google Scholar
[4]
K. Gulati, S. Lal, P.K. Diwan, S. Arora, Investigation of thermal, mechanical, morphological and optical properties of polyvinyl alcohol films reinforced with buddha coconut (sterculia alata) leaf fiber. International journal of applied engineering research. 14(1), 170-179 (2019). http://www.ripublication.com.
Google Scholar
[5]
Vijaya Kumar G., Enhancement of electrical conductivity in polyvinyl alcohol films by doping with Nd3+Ions. International journal of research-Granthaalayah. 5(4). (2017). https://doi.org/10.5281/zenodo.803434.
DOI: 10.29121/granthaalayah.v5.i4rast.2017.3308
Google Scholar
[6]
A. AbouElfadl, Structure, optical and thermal properties of gamma irradiated PVA/Cd0.9Mn0.1S nanocomposite films. Arab journal of nuclear sciences and applications 52(4):145-158(2019).
DOI: 10.21608/ajnsa.2019.8081.1177
Google Scholar
[7]
S. Agarwal, Y. K. Saraswat and V.K. Saraswat, Study of optical constants of ZnO dispersed PC/PMMA blend nanocomposites. open physics journal.vol.3,63-72,(2016).http://doi.org/ 10.2174/1874843001603010063.
DOI: 10.2174/1874843001603010063
Google Scholar
[8]
K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. 23(1), 1–7 (2019). https://doi.org/10.1007/s12588-019-09228-5.
DOI: 10.1007/s12588-019-09228-5
Google Scholar
[9]
A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukrain. J. Phys. 64(2), 157 (2019). https://doi.org/10.15407/ujpe64.2.157.
DOI: 10.15407/ujpe64.2.157
Google Scholar
[10]
A. Hashim, Y. Al-Khafaji, A. Hadi, Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Transactions on Electrical and Electronic Materials. Vol.20, (2019). https://doi.org/10.1007/s42341-019-00145-3.
DOI: 10.1007/s42341-019-00145-3
Google Scholar
[11]
A. Hadi, A. Hashim, Y. Al-Khafaji, Structural, optical and electrical properties of PVA/PEO/SnO2 new nanocomposites for flexible devices. Transactions on Electrical and Electronic Materials. Vol. 21, (2020). https://doi.org/10.1007/s42341-020-00189-w.
DOI: 10.1007/s42341-020-00189-w
Google Scholar
[12]
H.M. Shanshool, M. Yahaya, W.M. Mat Yunus, I. Y. Abdullah, Investigation of energy band gap in polymer/ZnO nanocomposites, J Mater Sci: Mater Electron, (2016). http://doi.org/10.1007/ s10854-016-5046-8.
DOI: 10.1007/s10854-016-5046-8
Google Scholar