DFT Study of Chemical Adsorption of NO2 Gas on Graphene Nano Material

Article Preview

Abstract:

In the current study, the density function theory (DFT) is used to investigate the chemical adsorption strength of NO2 gas molecule. The relaxation structure, molecular orbital energy, energy gap and adsorption energy are calculated at ground state. The time dependent DFT (TD-DFT) used to simulate excitation provides UV-Visible spectrum. There was a perpendicular geometrical orientation of the gas molecule around the surface and an adsorption distance of 2.58 Å. The adsorption distance shows the chemical reaction between the gas molecule and the surface. The result of adsorption energy indicates that the gas molecule that closed to the surface has high interaction and it decreases gradually when gas molecule goes further from the graphene nano-ribbon surface. The UV-Visible measurement indicates that the system interaction with gas molecule has red shifting in electromagnetic radiation. The final result concludes that graphene nano-ribbon has high reactivity for NO2 gas molecule. The theoretical calculations provide the ability to design optical sensor which has useful applications in an environmental monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

391-397

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A. A. Firsov: science, vol. 306, no. 5696, (2004), pp.666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] W. Zhang, J. Liu, Y. Sun, S. Gadipelli, X. Han, and G. Colantuono: (2018).

Google Scholar

[3] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth: Nature, vol. 446, no. 7131, (2007), pp.60-63.

DOI: 10.1038/nature05545

Google Scholar

[4] A. krueger: wily-vch, germany, (2010).

Google Scholar

[5] S. Iijima, Helical: Nature. Vol 354, (1991).

Google Scholar

[6] S. Iijima, T. Ichihashi: Nature. Vol 363, (1993).

Google Scholar

[7] N. Nakashima: Inter. J. Nanosci. Vol 4, (2005).

Google Scholar

[8] N. Nakashima, T. Fujigaya: Chem. Lett. Vol 36, 692-692, (2007).

Google Scholar

[9] R.H. Baughman, A.A. Zakhidov, W.A. De Heer: Science. Vol 297, (2002).

Google Scholar

[10] W. Wang, K.A.S. Fernando, Y. Lin, M.J. Meziani: J. Am. Chem. Soc. Vol 130, (2008).

Google Scholar

[11] P.L. McEuen, M.S. Fuhrer, H. Park: IEEE Transactions on Nanotechnology. Vol 1, (2002).

Google Scholar

[12] C.V. Nguyen, Q. Ye, M. Meyyappan: Measur. Sci. Tech. vol 16, (2005).

Google Scholar

[13] N.M. Gabor, Z. Zhong, K. Bosnick, J. Park, P.L. McEuen: Science. Vol 325, (2009).

Google Scholar

[14] A.L. Ndiaye, C. Varenne, P. Bonnet, E. Petit, et al. Elaboration of single wall carbon nanotubes-based gas sensors: Evaluating the bundling effect on the sensor performance,, Thin Solid Films. 520, 4465-4469, (2012).

DOI: 10.1016/j.tsf.2012.02.071

Google Scholar

[15] M.D. Shirsat, T. Sarkar, J. Kakoullis Jr., N.V. Myung, B. Konnanath, A. Spanias, A. Mulchandani, Porphyrin-functionalized single-walled carbon nanotube chemiresistive sensor arrays for VOCs,, Journal of Physical Chemistry C. 116, 3845-3850, (2012).

DOI: 10.1021/jp210582t

Google Scholar

[16] S.C. Lim, D.S. Lee, H.K. Choi, I.H. Lee, Y.H. Lee, Field emission of carbon-nanotube pointelectron source,, Diamond and Related Materials. 18, 1435-1439. (2009).

DOI: 10.1016/j.diamond.2009.09.010

Google Scholar

[17] P.J. Boul, K. Turner, J. Li, M.X. Pulikkathara, R.C. Dwivedi, E.D. Sosa, Y. Lu, O.V. Kuznetsov, P. Moloney, R. Wilkins, M.J. O'Rourke, Single wall carbon nanotube response to proton radiation,, Journal of Physical Chemistry C. 113, 14467-14473 (2009).

DOI: 10.1021/jp808553u

Google Scholar

[18] A.P. Terzyk, A. Pacholczyk, M. Wiśniewski, P.A. Gauden, Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: Carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation,, J. Colloid Interface Sci. 376, 290-216, (2012).

DOI: 10.1016/j.jcis.2012.03.004

Google Scholar

[19] R. Hu, X. Wang, S. Dai, D. Shao, T. Hayat, and A. Alsaedi, Application of graphitic carbon nitride for the removal of Pb (II) and aniline from aqueous solutions,, Chemical Engineering Journal, vol. 260, pp.469-477, (2015).

DOI: 10.1016/j.cej.2014.09.013

Google Scholar

[20] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, and B. I. Yakobson: Nano letters, vol. 10, (2010), pp.3209-3215.

DOI: 10.1021/nl1022139

Google Scholar

[21] C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. W. Carpick, and J. Hone: science, vol. 328, no. 5974 (2010), pp.76-80.

DOI: 10.1126/science.1184167

Google Scholar

[22] C. Joachim and M. A. Ratner: Proceedings of the National Academy of Sciences, vol. 102, (2005), pp.8801-8808, (2005).

Google Scholar

[23] B. Kasemo: Surface science, vol. 500, (2002), pp.656-677.

Google Scholar

[24] E. M. Karp, T. L. Silbaugh, and C. T. Campbell: Journal of the American Chemical Society, vol. 136, (2014), pp.4137-4140, (2014).

Google Scholar

[25] J. K. Nørskov, M. Scheffler, and H. Toulhoat: MRS bulletin, vol. 31, (2006), pp.669-674.

Google Scholar

[26] Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, and M.-S. Balogun: Energy Storage Materials, vol. 25, (2020), pp.41-51.

Google Scholar

[27] F. H. Hanoon: Journal of University of Babylon, vol. 21, (2013), pp.1828-1833.

Google Scholar

[28] M. P. Mueller: Springer Science & Business Media, 3rd edition, (2007).

Google Scholar

[29] P. A. Cox: Oxford University Press, 2nd edition, (1996).

Google Scholar

[30] P. Corradini, G. Guerra, and L. Cavallo: Accounts of chemical research, vol. 37, (2004), pp.231-241.

Google Scholar

[31] L. Belen'kii: Chemistry of Heterocyclic Compounds, vol. 31, (1995), pp.1137-1139.

Google Scholar

[32] C.-G. Zhan, J. A. Nichols, and D. A. Dixon: The Journal of Physical Chemistry A, vol. 107, (2003), pp.4184-4195.

Google Scholar