Effect of Cd Substitution on Structural and Optical Properties of Zn1-xCdxSe Thin Films

Article Preview

Abstract:

In this research, Zn1-xCdxSe alloys (x from 0 to 1) were synthesized by solid-state microwave (SSM) method of producing thermally evaporated thin films. The cubic structure and the elemental ratios of the films were studied using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The optical characterizations of the as-deposited film in terms of the energy band gap (Eg), photoluminescence (PL), and Raman shift spectra were conducted at the room temperature. The Eg values for the thin films from ZnSe to CdSe were 3.4 to 1.7 eV, respectively. The PL orange emission for ZnSe thin film at 565 nm, whereas 590 nm in the yellow region for CdSe thin film. From Raman shift spectra, the two longitudinal-optical phonon modes (1LO and 2LO) at 240, and 490 cm-1 are assigned for the ZnSe and CdSe thin films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1039)

Pages:

382-390

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. G. Sonawane, K.R. Patil, S.Mahamuni: J. Lumin. Vol. 135 (2013), pp.154-159.

Google Scholar

[2] R. Zhang and P. Yang: J. Phy. Chem. Sol. Vol. 74 (2013), pp.759-764.

Google Scholar

[3] S.S. Florence, R. John, D.L. Arockiasamy, M. Umadevi: Mater. Lett. Vol. 86 (2012), pp.129-131.

Google Scholar

[4] S. Park, H. Kim, C. Jin, C. Lee: Curr. Appl. Phys Vol. 12 (2012), pp.499-503.

Google Scholar

[5] S. Li, X. Liu, Haipengzhao, D. Tian: Mater. Lett. Vol. 83 (2012), pp.165-167.

Google Scholar

[6] V. Kumar and D.K. Dwivedi: Optik. Vol. 124 (2013), pp.2345-2348.

Google Scholar

[7] A.I. Khudiar, M. Zulfequar, Z.H. Khan: Mater. Sci. semi. Proc. Vol. 15 (2012), pp.536-542.

Google Scholar

[8] R. Mariappan, V. Ponnuswamy, M. Ragavendar: Optik Vol. 123 (2012), pp.1196-1200.

DOI: 10.1016/j.ijleo.2011.07.050

Google Scholar

[9] S. Dhomkar, U. Manna, L. Peng, R. Moug, I.C. Noyan, M.C. Tamargo, I.L. Kuskovsky: Sol. Energy Mater. Sol. Cells. Vol. 117 (2013), pp.604-609.

DOI: 10.1016/j.solmat.2013.07.037

Google Scholar

[10] Z.P. Guan, Z.H. Zheng, Y.M. Lu, B.J. Yang, X.W. Fan: Th. Sol. Fil. Vol. 263 (1995) , pp.203-205.

Google Scholar

[11] T.P. Surkova, P. Kaczor, A.J. Zakrzewski, K. Swiatek, V.Yu Ivanov, M. Godlewski, A. Polimeni: J. Cryst. Growth Vol. 214/215 (2000), pp.576-580.

DOI: 10.1016/s0022-0248(00)00156-1

Google Scholar

[12] R. Chandramohan, T. Mahalingama, J.P. Chu, P.J. Sebastian: Sol. Energy Mater. Sol. Cells. Vol. 81 (2004), pp.371-378.

Google Scholar

[13] A. A. Shakhmin, I. V. Sedova, S. V. Sorokin, M.V. Zamoryanskaya: Superlat. Microstr. Vol. 56 (2013), p.27–34.

Google Scholar

[14] S.C. Hung, B.R. Huang, S.J. Young, Y.C. Cheng, S.H. Chih: Superlat. Microstr. Vol. 48 (2010), pp.50-57.

Google Scholar

[15] J.-R. Lee and B.-W. Shiau: Physica E Vol. 63 (2014), p.199–203.

Google Scholar

[16] S.-Z. Kang, L. Jia, X. Li, J.Mu, Colloids and Surfaces A: Physicochem: Eng. Aspects Vol. 398 (2012), p.48– 53.

Google Scholar

[17] A. K. Singh,S. R. Deo,G. S. Thool,R. S. Singh,Y. R. Katre, A. Gupta: Syn. React. Inorg. Metal-Org. Nano Metal Chem. Vol. 41 (2011), p.1346–1350.

DOI: 10.1080/15533174.2011.609217

Google Scholar

[18] G. Manolis, D. Papadimitriou, D. Nesheva: Th. Sol. Fil. Vol. 495 (2006), p.338–342.

Google Scholar

[19] S. R. Deo, A. K. Singh, L. Deshmukh , L.J. Paliwal, R.S. Singh, R. Adhikari: J. Saudi Chem. Soc. Vol. 18 (2014), p.327–339.

Google Scholar

[20] C. Vargas-Hernandez, V.C. Lara, J.E. Vallejo, J.F. Jurado, O. Giraldo: Phys. Status Solidi B Vol. 242 (2005), p.1897–(1901).

Google Scholar

[21] Y.J. Yang and B.J. Xiang: J. Cryst. Growth Vol. 284 (2005), p.453–458.

Google Scholar

[22] B. Pejova and I. Grozdanov: Mater. Lett. Vol. 58 (2004), p.666–671.

Google Scholar

[23] A. Kadhim, A. Hmood, H. Abu Hassan: Mater. Lett. Vol. 65 (2011), p.3105–3108.

Google Scholar

[24] M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, R. K.T. Ramakrishna: Curr. Appl. Phys. Vol. 15, (2015), p.588.

Google Scholar

[25] J. Chao, Z. Wang, X. Xu, Q. Xiang, W. Song, G. Chen, J. Hu, Di Chen: RSC Adv. Vol. 3 (2013), p.2746.

Google Scholar

[26] P. Kumar, J. Singh, M. K. Pandey, C.E. Jeyanthi, R. Siddheswaran, M. Paulraj, K.N. Hui, K.S. Hui: Mater. Res. Bull. Vol. 49 (2014), p.144–150.

DOI: 10.1016/j.materresbull.2013.08.060

Google Scholar

[27] L.D. Yao, F.F. Wang, X. Shen, S. You: J. Alloy. Comp. Vol. 480 (2009), p.798–801.

Google Scholar

[28] B. Pejova: J. Solid State Chem. Vol. 213 (2014), p.22–31.

Google Scholar