[1]
J. R. Lamichhane, C. Dürr, A.A. Schwanck, M.H. Robin, J.P. Sarthou, V. Cellier, A. Messéan and J.N. Aubertot. Integrated management of damping off disease. A review. Agronomy for Sustainable Development 37(10). 25pp. (2017).
DOI: 10.1007/s13593-017-0417-y
Google Scholar
[2]
A. Khaeruni, and A. Rahman. Penggunaan bakteri kitinolitik sebagai agens biokontrol penyakit busuk batang oleh Rhizoctonia solani pada tanaman kedelai. Jurnal Fitopatologi Indonesia 8(2) : 37-43 (2012).
DOI: 10.14692/jfi.8.2.37
Google Scholar
[3]
F.Baysal-Gurel, and P. Liyanapathiranage. Phatogenicity of Rhizoctonia solani and Phytophthora nicotinae to brassicacea cover crops. Archives of Phytophatology and Plant Protection 52 : 288-302. (2019).
DOI: 10.1080/03235408.2019.1617499
Google Scholar
[4]
M. Vojvodic, D. Lazic, P. Mitrovic, B. Tanovic, I. Vico, and A. Bulajic. Conventional and real time PCR assays for detection and identification of Rhizoctonia solani AG-2-2, the causal agent of root rot of sugar beet. Pestic. Phytomed. (berlgrade) 34(1) : 19-29. (2019).
DOI: 10.2298/pif1901019v
Google Scholar
[5]
D. Atwood, C. Paisley-Jones. Pesticides industrry sales and usage 2008-2012 market estimates. US Enviromental Protection Agency, Washington, DC. (2017).
Google Scholar
[6]
R. N. Silva, V. N. Monteiro, A. S. Steindorff, E. V. Gomes, E. F. Noronha, and C. J. Ulhoa. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology, 123(8): 565–583. (2019).
DOI: 10.1016/j.funbio.2019.06.010
Google Scholar
[7]
B. Marwoto. Prospek Penggunaan Mikroba Antagonis sebagai Agens Pengendali Hayati Penyakit Utama pada Tanaman Hias dan Sayuran. Jurnal Penelitian dan Pengembangan Pertanian 31(1): 8–13. (2012).
DOI: 10.21082/jp3.v35n1.2016.p37-45
Google Scholar
[8]
I. P. Dewi, T. Maryono, T. N. Aeny and S. Ratih. Kemampuan Trichoderma sp. dan Filtratnya dalam Menekan Pertumbuhan Sclerotium rolfsii secara in vitro. J. Agrotek Tropika 3(1): 130–133 (2015).
DOI: 10.23960/jat.v3i1.1974
Google Scholar
[9]
S. Rai, P. L. Kashyap, S. Kumar, A.K. Srivastava and P. W. Ramteke. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus, 5(1): 1-16. (2016).
DOI: 10.1186/s40064-016-3657-4
Google Scholar
[10]
R. Harni, W. Amaria and H. Mahsunah. Potensi Metabolit Sekunder Trichoderma spp. untuk Mengendalikan Penyakit Vascular Streak Dieback (Vsd) pada Bibit Kakao. Jurnal Tanaman Industri dan Penyegar (4): 57–66. (2017).
DOI: 10.21082/jtidp.v6n3.2019.p109-118
Google Scholar
[11]
L. Herlina. Potensi Trichoderma harzianum sebagai Biofungisida pada Tanaman Tomat (Trichoderma harzianum Potency as a Biofungicide on Tomato Plant). Biosaintifika: Journal of Biology & Biology Education 1(1): 1–7. (2011).
Google Scholar
[12]
P. Leng, Z. Zhang, G. Pan and M. Zhao. Applications and development trends in biopesticides. African Journal of Biotechnology, 10(86): 64–73. (2011).
Google Scholar
[13]
L. Djaya, Hersanti, N. Istifadah, S. Hartati and I M. Joni. In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology 19: 1878-8181. (2019).
DOI: 10.1016/j.bcab.2019.101153
Google Scholar
[14]
Hersanti, Sudarjat, and A. Damayanti. Kemampuan Bacillus subtilis dan Lysinibacillus sp. dalam Silika Nano dan Serat Karbon untuk Menginduksi Ketahanan Bawang Merah terhadap Penyakit Bercak Ungu {Alternaria porri (Ell.) Cif}. Agrikultura 30(1): 8. (2019).
DOI: 10.24198/agrikultura.v30i1.22622
Google Scholar
[15]
Hersanti, and L. Djaya. Kemampuan Trichoderma harzianum dalam formulasi serat karbon dan partikel nano (NPs) untuk menekan Phytopthora nicotianae. [Abstrak]. Seminar dan Lokakarya Nasional Forum Komunikasi Perguruan Tinggi Pertanian Indonesia (FKPTPI), 149. (2019).
DOI: 10.24198/agrikultura.v31i3.29483
Google Scholar
[16]
R.R. Ruhyaman, Hersanti, S. Hartati, M. Setiawati, and I. M Joni. Efficacy of Bacillus subtilis in Nano Silica and Carbon Fiber Formulation for Control of Ralstonia solanacearum Under In Vitro Conditions. [Abstrak]. 5th Asian PGPR International Conference For Sustainable Agriculture. Pp. 142 (2017).
Google Scholar
[17]
G. Karunakaran, R. Suriyaprabha, P. Manivasakan, R. Yuvakumar, V. Rajendran, P. Prabu, and N. Kannan. Effect of nanosilica and silicon sources on plant growth promoting rhizocbacteria, soil nutrient and maize seed germination. IET nanobiotechnology, The Institute of Engineering and Technology, 1-8. (2013).
DOI: 10.1049/iet-nbt.2012.0048
Google Scholar
[18]
M. Bayu and S. Budi. Potensi Kombinasi Trichoderma sp. dan Abu Sekam Padi sebagai Sumber Silika dalam Meningkatkan Ketahanan Tanaman Jagung (Zea mays) terhadap Serangan Penyakit Bulai (Peronosclerospora maydis). Seminar Nasional Program Studi Agribisnis, Fakultas Pertanian, Universitas Jember, 732–747. (2018).
DOI: 10.25181/jppt.v18i1.641
Google Scholar
[19]
F. M. Mathew, R. S. Lamppa, K. Chiterm, Y.W. Chang, M. Botshner, K. Kinzer, R. S. Goswami and S.G. Markell. Characterization and phatogenicity of Rhizoctonia solani isolates affecting Pisum sativum in North Dakota. The American Phytopathological Society 96(5): 666-672 (2012).
DOI: 10.1094/pdis-02-11-0087
Google Scholar
[20]
S.A. Youssef, K.A. Tartoura, and G.A. Abdelrouf. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological control 100: 79-86. (2016).
DOI: 10.1016/j.biocontrol.2016.06.001
Google Scholar
[21]
Kalay, A. M., Talahaturuson, A., and Rumahlewang, W. (2018). Uji Antagonisme Trichoderma harzianum Dan Azotobacter chroococcum Terhadap Rhizoctonia solani, Sclerotium rolfsii dan Fusarium oxysporum secara in-vitro. J. Agrologia, 7(2): 71–78.
DOI: 10.30598/a.v7i2.764
Google Scholar
[22]
I. Ilahiyat. Kemampuan Trichoderma harzianum dalam formulasi serat karbon dan silika nano untuk mengendalikan penyakit rebah semai (Sclerotium rolfsii) pada tanaman kedelai. Tesis. Program Studi Magister Agronomi, Fakultas Pertanian, Universitas Padjadjaran. (2019).
DOI: 10.25077/jpt.1.2.52-61.2017
Google Scholar
[23]
K.V. Neha, R. Naveenkumar, P. Balabaskar, and P. Manikandan. Evaluation of fungicides against sheath blight of rice caused by Rhizoctia solani (Kuhn.). Oryza 54(4) : 470-476 (2017).
DOI: 10.5958/2249-5266.2017.00064.9
Google Scholar
[24]
A.M. Kalay, G.N.C. Tuhumury, and N. Pesireron. Pengendalian Pertumbuhan Bibit Tomat dengan memanfaatkan Trichoderma harzianum berbasis bahan organik padat. Agrologia, 8(1) : 12-20 (2019).
Google Scholar
[25]
M.A.B. Boat, M.L. Sameca, B. Lacomi, S.N. Tchameni, and F. Boyom. Screening, identification and evaluation of Trichoderma spp. for biocontrol potential of common bean damping off pathogens. Biocontrol Science and Technology. Informa UK, trading as Taylor & Francis Group, 1-12. (2019).
DOI: 10.1080/09583157.2019.1700909
Google Scholar
[26]
V.K. Gupta, M. Scmoll, A.H. Estrella, R.S. Upadhyay, I. Druzhinia, and M.G. Touhy. Biotechnology and biology Trichoderma. Elsevier, 1-527. (2014).
Google Scholar
[27]
I. Berlian, B. Setyawan, and H. Hadi. Mekanisme Antagonisme Trichoderma spp. Terhadap Beberapa Patogen Tular Tanah. Warta Perkaretan, 32(2): 74. (2013).
DOI: 10.22302/ppk.wp.v32i2.39
Google Scholar
[28]
K. F. Baker and R. J. Cook. Biological control of plant pathogens. The American Phytophatology Society. Minnessota Fravel. (1982).
Google Scholar
[29]
Y. Goudjal, O. Toumatia, A. Yekkour, N. Sabaou, F. Mathieu, and A. Zitoumi. Biocontrol of Rhizoctonia solani damping off and promotion of tomato plant growth by endophtic actinomycetes isolated from native plants of Algerian Sahara. Microbiological Research, 169(1): 59-65 (2014).
DOI: 10.1016/j.micres.2013.06.014
Google Scholar
[30]
G.V. Garzia, M.A.P. Onco and V. R. Susan. Review biology and systematics of the form Genus Rhizoctonia. Span J Agric Res 4(1): 55-79 (2006).
DOI: 10.5424/sjar/2006041-178
Google Scholar
[31]
A. Singh, R. Rohilla, U.S. Singh, S. Savari, L. Wilocquet, and E. Duveiller, An imporved inoculation technique for sheath blight of rice caused by Rhizoctonia solani. J. Plant Pathol 24: 65-68 (2012).
DOI: 10.1080/07060660109506973
Google Scholar
[32]
M. Rajendraprasad, B.V. Sagar, G.U. Devi, and S.R.K. Rao. Biological control of tomato damping off caused by Sclerotium rolfsii. Journal Entomology and Zoology Studies, 5(5) : 113-119 (2017).
Google Scholar
[33]
R. Hermosa, R.E. Cardoza, M.B. Rubio, S. Gutierrez, and E. Monte. Secondary metabolism and antimicrobal metabolites of Trichoderma. Editor: T.R. Glare and M. Diez-Moran. Microbial Based Biopesticides. Springer Protocols. Humana Press. Pp. 123 (2014).
DOI: 10.1016/b978-0-444-59576-8.00010-2
Google Scholar
[34]
G. Zhang, Y. Cui, X. Ding, and Q. Dai. Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. Journal of Plant Nutrition and Soil Science, 176: 118-12 (2013).
DOI: 10.1002/jpln.201200008
Google Scholar
[35]
N. Sakr. Review article, The role of silicon (Si) in increasing plant resistance against fungal disease. Hellenic Plant Protection Journal, 9: 1-15 (2016).
DOI: 10.1515/hppj-2016-0001
Google Scholar
[36]
M. Kumar and N. Kudada. Effect of sowing dates and weather conditions on Rhizoctonia root rot disease incidence and green pod yield of French bean. Journal of Pharmacognosy and Phytochemistry. 7(3): 893-899. (2018).
Google Scholar
[37]
M.M. Islam, D.M. Hossain, M. Nonaka, and N. Harada. Biological control of tomato collar rot induced by Sclerotium rolfsii using Trichoderma species isolated in Bangladesh. Archives of Phytopathopatology and Plant Protection. Informa Uk Limited, trading as Taylor & Francis Group, 1-7 (2016).
DOI: 10.1080/03235408.2016.1265243
Google Scholar
[38]
J. C. Marodin, R.G.F. Morales, J.T.V. Resende, and M.L.S. Silva. Yield of tomato fruits in relation to silicon sources and rates. Horticultura brasiliera, 32: 220-224. (2014).
DOI: 10.1590/s0102-05362014000200018
Google Scholar
[39]
F.T. Sanchez, A.V. Garcia, and F.C. Ferre. Effect of application of silicon hydroxide on yield and quality of cherry tomato. Journal of Plant Nutrition, 35(4): 567-590 (2012).
DOI: 10.1080/01904167.2012.644375
Google Scholar
[40]
H.P. Fitriani, and S. Haryanti. Pengaruh penggunaan pupuk nanosilika terhadap pertumbuhan tanaman Solanum lycopersicum L. var. Bulat. Buletin Anatomi dan Fisiologi, 24(1): 34-41 (2016).
DOI: 10.14710/baf.3.1.2018.1-10
Google Scholar
[41]
G. Manganiello, A. Sacco, M.R. Ercolano, F. Vinale, A. Pascale, M. Napolitano, N. Lombardi, M. Lorito, and S.L. Woo. Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Frontiers in Microbiology, 9:1966 (2018).
DOI: 10.3389/fmicb.2018.01966
Google Scholar