Dynamic of Chemical and Biological Properties of Inceptisols Cilembu due to Phosphate Rock Nanoparticle Amendment and Phosphate-Solubilizing Fungi Inoculation

Article Preview

Abstract:

Cilembu's Inceptisols have great potential for agriculture. However, land management has several limiting factors: the available phosphate content, cation exchange capacity (CEC), and low population of functional soil organisms. Rock phosphate is a natural material that can increase the availability of P nutrient. Application of rock phosphate as an ameliorant in nanoparticle size and inoculation of phosphate-solubilizing fungi (PSF) is a strategy that can be implemented to address the Inceptisols constraints. However, the dynamic of chemical and biological characteristics of Cilembu Inceptisols due to amendment of phosphate rock nanoparticle (PRNp) and phosphate solubilizing fungi (PSF) inoculation is not yet understood clearly. To know the dynamics of the chemical and biological properties of the soil due to the treatment of these materials is an essential aspect for strategy and planning in its proper application to improve the properties of Inceptisols. The completely randomized design (CRD) was used in this study, with a factorial pattern, consisting of the first factor being the amendment of rock phosphate nanoparticle and the second factor being the PSF inoculation. The observation was carried out in a month interval, with a three-month incubation. The result showed there was no interaction between phosphate rock nanoparticle amendment and PSF inoculation on pH-H2O, available P, CEC, and abundance of PSF population. The independent effect showed that a characteristic pattern of pH and available P values during two months of observation was increasing by PRNp amendment. Meanwhile, inoculation of PSF did not increase soil pH and P-available. The value of CEC and the population of PSF did not increase significantly during the three-month incubation. The dose of phosphate rock nanoparticle 2% (wt/wt) increased the highest available P.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1044)

Pages:

121-131

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mulyani, A. Rachman, A. Dairah, Penyebaran lahan masam, potensi dan ketersediaanya untuk pengembangan pertanian, Pros. Simp. Nas. Pendayagunaan Tanah Masam. (2010) 23–24.

Google Scholar

[2] T. Binh, F. Zapata, Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project, Assess. Soil Phosphorus Status Manag. Phosphatic Fertil. to Optim. Crop Prod. IAEA-TECDO (2002) 9–23. https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/019/33019221.pdf?r=1&r=1.

Google Scholar

[3] P. Sanjotha, P. Mahantesh, C.S. Patil, Isolation and Screening of Efficiency of Phosphate Solubilizing Microbes, Int. J. Microbiol. Res. 3 (2011) 56–58. https://doi.org/10.9735/0975-5276.3.1.56-58.

DOI: 10.9735/0975-5276.3.1.56-58

Google Scholar

[4] J. Maryanto, Abubakar, Pengaruh Konsentrasi Pupuk Hayati Majemuk dan Batuan Fosfat Alam terhadap Serapan P oleh Tanaman Selada (Latuca sativa L.) di Tanah Andisols, Agrivigor. 3 (2010) 110–117.

DOI: 10.29244/jhi.1.2.66-73

Google Scholar

[5] B.H. Prasetyo, D.A. Suriadikarta, Karakteristik, Potensi, dan Teknologi Pengelolaan Tanah Ultisol untuk Pengembangan Pertanian Lahan Kering di Indonesia, J. Litbang Pertan. 25 (2006) 39–47. http://pustaka.litbang.deptan.go.id/publikasi/p.3252061.pdf.

DOI: 10.21082/jp3.v39n1.2020.p21-34

Google Scholar

[6] J.C. Tarafdar, R. Raliya, H. Mahawar, I. Rathore, Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum), Agric. Res. 3 (2014) 257–262. https://doi.org/10.1007/s40003-014-0113-y.

DOI: 10.1007/s40003-014-0113-y

Google Scholar

[7] M.C. Derosa, C. Monreal, M. Schnitzer, R. Walsh, Y. Sultan, Nanotechnology in fertilizers, Nat. Nanotechnol. 5 (2010) 91. https://doi.org/10.1038/nnano.2010.2.

DOI: 10.1038/nnano.2010.2

Google Scholar

[8] Q. Chaudhry, M. Scotter, J. Blackburn, B. Ross, A. Boxall, L. Castle, R. Aitken, R. Watkins, Applications and implications of nanotechnologies for the food sector, Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 25 (2008) 241–258. https://doi.org/10.1080/02652030701744538.

DOI: 10.1080/02652030701744538

Google Scholar

[9] M. Garcia, T. Forbe, E. Gonzalez, The dedication of the new cantonal hospital in Liestal., Cienc. e Tecnol. Aliment. 30 (2010) 573–581.

Google Scholar

[10] L. Xiong, P. Wang, P.M. Kopittke, Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils, Geoderma. 323 (2018) 116–125. https://doi.org/10.1016/j.geoderma.2018.03.002.

DOI: 10.1016/j.geoderma.2018.03.002

Google Scholar

[11] P.M. Kopittke, N.W. Menzies, P. Wang, B.A. McKenna, E. Lombi, Soil and the intensification of agriculture for global food security, Environ. Int. 132 (2019) 105078. https://doi.org/10.1016/j.envint.2019.105078.

DOI: 10.1016/j.envint.2019.105078

Google Scholar

[12] Y. Zhang, F.S. Chen, X.Q. Wu, F.G. Luan, L.P. Zhang, X.M. Fang, S.Z. Wan, X.F. Hu, J.R. Ye, Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments, PLoS One. 13 (2018) 1–14. https://doi.org/10.1371/journal.pone.0199625.

DOI: 10.1371/journal.pone.0199625

Google Scholar

[13] D. Hutagaol, I. Hasrizart, D.A. Sofian, Aplikasi Cendawan Pelarut Fosfat Indigenous Tanah Sawah Meningkatkan Ketersediaan dan Serapan P Padi Sawah, J. Agron. Indones. (Indonesian J. Agron. 45 (2017) 9–13. https://doi.org/10.24831/jai.v45i1.13648.

DOI: 10.24831/jai.v45i1.13648

Google Scholar

[14] R. Teodosieva, D. Bojinova, Biodecomposition of Jordan phosphorite by Phosphate-Solubilizing Fungi, Brazilian J. Chem. Eng. 33 (2016) 1–11. https://doi.org/10.1590/0104-6632.20160331s00003267.

DOI: 10.1590/0104-6632.20160331s00003267

Google Scholar

[15] E. Afif, A. Matar, J. Torrent, Availability of Phosphate Applied to Calcareous Soils of West Asia and North Africa, Soil Sci. Soc. Am. J. 57 (1993) 756–760. https://doi.org/10.2136/sssaj1993.03615995005700030022x.

DOI: 10.2136/sssaj1993.03615995005700030022x

Google Scholar

[16] Haryanto, K. Idris, R.I. Kawalusan, Pengaruh Pupuk Fosfat Alam Pada Tanah Masam Terhadap Pertumbuhan Jagung Serta Serapan N-ZA dan N-Urea, J. Ilm. Apl. Isot. Dan Radiasi. 4 (2008) 130–142.

DOI: 10.30598/a.v1i2.286

Google Scholar

[17] P.D.S.U. Kumari, C.M. Nanayakkara, Phosphate-solubilizing fungi for efficient soil phosphorus management, Sri Lanka J. Food Agric. 3 (2017) 1. https://doi.org/10.4038/sljfa.v3i2.46.

DOI: 10.4038/sljfa.v3i2.46

Google Scholar

[18] S.M. Singh, L.S. Yadav, S.K. Singh, P. Singh, P.N. Singh, R. Ravindra, Phosphate solubilizing ability of two arctic Aspergillus niger strains, Polar Res. 30 (2011). https://doi.org/10.3402/polar.v30i0.7283.

DOI: 10.3402/polar.v30i0.7283

Google Scholar

[19] P.J. Artha, H. Guchi, P. Marbun, Efektifitas Aspergiluss niger dan Penicillium sp dalam meningkatkan ketersediaan Fosfat dan pertumbuhan tanman jagung pada tanah Andisol, J. Online Agroekoteknologi. 1 (2013) 1277–1287.

DOI: 10.29244/jhi.1.2.66-73

Google Scholar

[20] R. Devnita, B. Joy, M. Arifin, R. Hudaya, N. Oktaviani, Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil, AIP Conf. Proc. 1927 (2018). https://doi.org/10.1063/1.5021220.

DOI: 10.1063/1.5021220

Google Scholar

[21] H. Tributsch, Direct versus indirect bioleaching, Hydrometallurgy. 59 (2001) 177–185. https://doi.org/10.1016/S0304-386X(00)00181-X.

DOI: 10.1016/s0304-386x(00)00181-x

Google Scholar

[22] X. Wang, C. Wang, J. Sui, Z. Liu, Q. Li, C. Ji, X. Song, Y. Hu, C. Wang, R. Sa, J. Zhang, J. Du, X. Liu, Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities, AMB Express. 8 (2018) 1–12. https://doi.org/10.1186/s13568-018-0593-4.

DOI: 10.1186/s13568-018-0593-4

Google Scholar

[23] X. Zhou, S. Wan, Y. Luo, Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem, Glob. Chang. Biol. 13 (2007) 761–775. https://doi.org/10.1111/j.1365-2486.2007.01333.x.

DOI: 10.1111/j.1365-2486.2007.01333.x

Google Scholar

[24] T.A. Spedding, C. Hamel, G.R. Mehuys, C.A. Madramootoo, Soil microbial dynamics in maize-growing soil under different tillage and residue management systems, Soil Biol. Biochem. 36 (2004) 499–512. https://doi.org/10.1016/j.soilbio.2003.10.026.

DOI: 10.1016/j.soilbio.2003.10.026

Google Scholar

[25] F. Raiesi, M. Ghollarata, Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil, Handb. Environ. Chem. Vol. 5 Water Pollut. 50 (2006) 413–425. https://doi.org/10.1016/j.pedobi.2006.08.001.

DOI: 10.1016/j.pedobi.2006.08.001

Google Scholar

[26] Q. Yang, X. Wang, Y. Shen, J.N.M. Philp, Functional diversity of soil microbial communities in response to tillage and crop residue retention in an eroded Loess soil, Soil Sci. Plant Nutr. 59 (2013) 311–321. https://doi.org/10.1080/00380768.2013.775004.

DOI: 10.1080/00380768.2013.775004

Google Scholar

[27] S. Wakelin, C. Mander, E. Gerard, J. Jansa, A. Erb, S. Young, L. Condron, M. O'Callaghan, Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures, Appl. Soil Ecol. 61 (2012) 40–48. https://doi.org/10.1016/j.apsoil.2012.06.002.

DOI: 10.1016/j.apsoil.2012.06.002

Google Scholar