A Brief Review: Immobilization of TiO2 Photocatalyst Materials on Supporting Surfaces for Degradation of Organic Pollutants

Article Preview

Abstract:

The process of final disposal of industrial wastewater is an important issue to avoid contamination. Photocatalyst technology can be a solution to waste control by degrading organic pollutants. The synthesis process of TiO2 catalyst immobilized with supporting materials has been proven more efficient in photocatalyst activation. This gives a high UV adsorption power and does not require further handling of the final purification process because it does not produce a catalyst suspension. Immobilization methods are simplest but still produce high efficiency, namely, the thermal milling method and the sol-gel method. Both methods can produce 97% efficiency. Immobilization using thermal milling can take quickly and only through one step but requires a long time in the degradation process. Besides, immobilization using the sol-gel method requires several steps, but the process of degradation is fast. The method used must be by the type of support material, the pollutants to be degraded, and the operating system like coating time. This paper focuses on the immobilization method suitable to support materials to maximize the degradation process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1044)

Pages:

153-161

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Naimah, S.A. A, B.N. Jati, N. Nur, C. Arianita, Degradasi Zat Warna Pada Limbah Cair Industri Tekstil Dengan Metode Fotokatalitik Menggunakan Nanokomposit TiO2-Zeolit, J. Kim. Kemasan. 36 (2014) 225–236. http://dx.doi.org/10.24817/jkk.v36i2.1889.

DOI: 10.24817/jkk.v36i2.1889

Google Scholar

[2] K.M. Docherty, S.W. Aiello, B.K. Buehler, S.E. Jones, B.R. Szymczyna, K.A. Walker, Ionic liquid biodegradability depends on specific wastewater microbial consortia, Chemosphere. 136 (2015) 160–166. https://doi.org/10.1016/j.chemosphere.2015.05.016.

DOI: 10.1016/j.chemosphere.2015.05.016

Google Scholar

[3] G.S. Pembayun, R.Y.. Yulianto, M. Rachimoellah, E.M.. Putri, Pembuatan Karbon Aktif Dari Arang Tempurung Kelapa Dengan Aktivator ZnZl2 dan Na2CO3 Sebagai Adsorben Untuk Mengurangi Kadar Fenol Dalam Air Limbah, J. Tek. Pomits. 2 (2013) 116–120.

DOI: 10.33536/jcpe.v2i1.110

Google Scholar

[4] A. Herlambang, R. Marsidi, Proses Denitrifikasi Dengan Sistem Biofilter Untuk Pengolahan Air Limbah Yang Mengandung Nitrat, J. Tek. Ling. 4 (2003) 46–55. https://doi.org/10.29122/jtl.v4i1.272.

Google Scholar

[5] H. Mulyani, S. Sasongko, D. Soetrisnanto, Pengaruh Preklorinasi Terhadap Proses Start Up Pengolahan Limbah Cair Tapioka Sistem Anaerobic Baffled Reactor, J. Momentum UNWAHAS. 8 (2012) 115058. http://dx.doi.org/10.36499/jim.v8i1.283.

Google Scholar

[6] Syamsudin, S. Purwati, T. R, Efektivitas Aplikasi Enzim Dalam Sistem Lumpur Aktif Pada Pengolahan Air Limbah Pulp Dan Kertas, J. Selulosa. 43 no 2 (2017). http://dx.doi.org/10.25269/jsel.v43i02.156.

DOI: 10.25269/jsel.v6i02.92

Google Scholar

[7] M. Firdayati, M. Handajani, Studi Karakteristik Dasar Limbah Industri Tepung Aren, (2015).

Google Scholar

[8] I. Syauqiah, M. Amalia, H.A. Kartini, Analisis Variasi Waktu Dan Kecepatan Pengadukan Pada Proses Adsorpsi Limbah Logam Berat Dengan Arang Aktif, Info Tek. 12 (2011) 11–20. http://dx.doi.org/10.20527/infotek.v12i1.1773.

Google Scholar

[9] H. Aliah, A.. Nurasiah, Y. Karlina, O. Arutanti, E. Sustini, M. Budiman, M. Abdullah, Optimalisasi Durasi Pelapisan katalis TiO2 pada Permukaan Polipropilen serta Aplikasinya dalam Fotodegradasi Larutan Metilen Biru, (2012) 58–61.

Google Scholar

[10] A. Aryanto, I. Nugraha, Kajian Fotodegradasi Methyl Orange dengan Menggunakan Komposit TiO2-Montmorillonit, Molekul. 10 no 1 (2015) 57–65. http://dx.doi.org/10.20884/1.jm.2015.10.1.174.

DOI: 10.20884/1.jm.2015.10.1.174

Google Scholar

[11] G.C. Park, T.Y. Seo, C.H. Park, J.H. Lim, J. Joo, Effects of Calcination Temperature on Morphology, Microstructure, and Photocatalytic Performance of TiO2 Mesocrystals, Ind. Eng. Chem. Res. 56 (2017) 8235–8240. https://doi.org/10.1021/acs.iecr.7b01920.

DOI: 10.1021/acs.iecr.7b01920

Google Scholar

[12] A. Listanti, A. Taufiq, A. Hidayat, S. Sunaryono, Investigasi Struktur dan Energi Band Gap Partikel Nano Tio2 Hasil Sintesis Menggunakan Metode Sol-Gel, JPSE (Journal Phys. Sci. Eng. 3 (2018) 8–15. https://doi.org/10.17977/um024v3i12018p008.

DOI: 10.17977/um024v3i12018p008

Google Scholar

[13] E. Hastuti, Analisa Difraksi Sinar X TiO2 dalam Penyiapan Bahan Sel Surya Tersensitisasi Pewarna, J. Neutrino. 2010 (2012) 93–100. https://doi.org/10.18860/neu.v0i0.2416.

DOI: 10.18860/neu.v0i0.2416

Google Scholar

[14] Sutisna, M. Rokhmat, E. Wibowo, R. Murniati, Khairurrijal, M. Abdullah, Application of Immobilized Titanium Dioxide as Reusable Photocatalyst on Photocatalytic Degradation of Methylene Blue, Adv. Mater. Res. 1112 (2015) 149–153. https://doi.org/10.4028/www.scientific.net/amr.1112.149.

DOI: 10.4028/www.scientific.net/amr.1112.149

Google Scholar

[15] H. Aliah, Y. Karlina, Semikonduktor TiO2 Sebagai Material Fotokatalis Berulang, Jur. Fis. UIN SGD Bandung. IX (2015) 185–203.

Google Scholar

[16] H. Aliah, M.P. Aji, Masturi, E. Sustini, M. Budiman, M. Abdullah, TiO2 Nanoparticles-Coated Polypropylene Copolymer as Photocatalyst on Methylene Blue Photodegradation under Solar Exposure, (2012). https://www.researchgate.net/publication/286187872.

DOI: 10.1063/1.3667245

Google Scholar

[17] M.H. Alhaji, K. Sanaullah, A. Khan, A. Hamza, A. Muhammad, M.S. Ishola, A.R.H. Rigit, S.A. Bhawani, Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review, Int. J. Environ. Sci. Technol. 14 (2017) 2039–2052. https://doi.org/10.1007/s13762-017-1349-4.

DOI: 10.1007/s13762-017-1349-4

Google Scholar

[18] A. Bouarioua, M. Zerdaoui, Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant, J. Environ. Chem. Eng. 5 (2017) 1565–1574. https://doi.org/10.1016/j.jece.2017.02.025.

DOI: 10.1016/j.jece.2017.02.025

Google Scholar

[19] R. Ata, O. Sacco, V. Vaiano, L. Rizzo, G.Y. Tore, D. Sannino, Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment, J. Photochem. Photobiol. A Chem. 348 (2017) 255–262. https://doi.org/10.1016/j.jphotochem.2017.08.054.

DOI: 10.1016/j.jphotochem.2017.08.054

Google Scholar

[20] L. Lin, H. Wang, W. Jiang, A.R. Mkaouar, P. Xu, Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers, J. Hazard. Mater. 333 (2017) 162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044.

DOI: 10.1016/j.jhazmat.2017.02.044

Google Scholar

[21] D. Wood, S. Shaw, T. Cawte, E. Shanen, B. Van Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J. 391 (2020) 123490. https://doi.org/10.1016/j.cej.2019.123490.

DOI: 10.1016/j.cej.2019.123490

Google Scholar

[22] E. Supriyanto, G. Wiranto, I.D.. Hermida, M. Budiman, P. Arifin, Sukirno, M. Barmawi, Pengaruh Kandungan Co Terhadap Sifat Optik Film Tipis TiO2-Co Yang Ditumbuhkan Dengan Metode MOCVD, (2007) 4–8. http://dx.doi.org/10.17146/jusami.2007.0.0.5148.

DOI: 10.5614/itbj.sci.2005.37.2.2

Google Scholar

[23] Q. Zhang, C. Li, Effects of water-to-methanol ratio on the structural, optical and photocatalytic properties of titanium dioxide thin-films prepared by mist chemical vapor deposition, Catal. Today. (2019). https://doi.org/10.1016/j.cattod.2019.11.019.

DOI: 10.1016/j.cattod.2019.11.019

Google Scholar

[24] S. Morelli, R. Pérez, A. Querejeta, J. Muñoz, L. Lusvarghi, M. Lassinantti Gualtieri, G. Bolelli, H.J. Grande, Photocatalytic enamel/TiO2 coatings developed by electrophoretic deposition for methyl orange decomposition, Ceram. Int. 44 (2018) 16199–16208. https://doi.org/10.1016/j.ceramint.2018.05.245.

DOI: 10.1016/j.ceramint.2018.05.245

Google Scholar

[25] C. Rahma, Sintesis dan Karakterisasi Material Fotokatalis Na2Ti6O13 Menggunakan Metode Hidrotermal, J. Optim. 3 (2018) 28–38. https://doi.org/10.35308/jopt.v3i4.263.

DOI: 10.35308/jopt.v3i4.263

Google Scholar

[26] S. Rahayu, R. Nuryadi, L. Aprilia, D.H. Purwati, Pengaruh Tegangan dan Waktu Deposisi Terhadap Pelapisan TiO 2 dengan Metode Elektroforesis, Ind. Res. Work. Natl. Semin. (2012). https://doi.org/10.35313/irwns.v3i0.348.

Google Scholar

[27] M.T. Islam, A. Dominguez, R.S. Turley, H. Kim, K.A. Sultana, M.A.I. Shuvo, B. Alvarado-Tenorio, M.O. Montes, Y. Lin, J. Gardea-Torresdey, J.C. Noveron, Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water, Sci. Total Environ. 704 (2020) 135406. https://doi.org/10.1016/j.scitotenv.2019.135406.

DOI: 10.1016/j.scitotenv.2019.135406

Google Scholar

[28] M. Malakootian, A. Nasiri, M. Amiri Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun. 207 (2020) 56–72. https://doi.org/10.1080/00986445.2019.1573168.

DOI: 10.1080/00986445.2019.1573168

Google Scholar