Mathematical Models for Forecasting of 10Mn2VNb Steel Heavy Plates Mechanical Properties

Article Preview

Abstract:

The problem urgency for determining the optimal rolling and heat treatment schedules for providing the required indices of heavy plates physical and mechanical properties is shown. The use of statistical mathematical models for solving this problem is substantiated and the methodology for their design is described. Statistical mathematical models were designed using the mathematical statistics methods and Data Mining tools to determine the yield strength, ultimate tensile strength and percent elongation for 10Mn2VNb steel plates rolled under 3600 heavy plate mill conditions. Software for the numerical implementation of these statistical mathematical models has been developed. Applied software has been developed for the numerical implementation of the statistical mathematical models for predicting the heavy plate’s mechanical properties, and high calculation accuracy has been confirmed with the ones help: 95.82% for the yield strength, 96.78% for the ultimate tensile strength, and 91.48% for the percent elongation. The regularities of the influence for finish rolling factual temperature in the finishing stand of 3600 heavy plate mill and the plate thickness on 10Mn2VNb pipe steel physical and mechanical properties were identified by processing the database and using the designed software.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

237-245

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Korotkov, A.N., Korotkova, L.P., & Vidin, D.V. (2020). Improving the Quality of Rolled Metal Products Using a Set of Quality Management Statistical Methods. IOP Conference Series: Earth and Environmental Science, 459, 052042. https://doi.org/10.1088/1755-1315/459/5/052042.

DOI: 10.1088/1755-1315/459/5/052042

Google Scholar

[2] Dovgan, D. (2017). Problems of ensuring competitiveness for Ukrainian export on the world ferrous metals market. EUREKA: Social and Humanities, 4, 3-12. https://doi.org/10.21303/2504-5571.2017.00378.

DOI: 10.21303/2504-5571.2017.00378

Google Scholar

[3] Kukhar, V.V., Kurpe, O.H., Prysiazhnyi, A.H., Khliestova, O.A., Burko, V.A., Balalayeva, E. Yu. & Yelistratova, N. Yu. (2021). Improving of preventive management for flat rolling products quality indices. IOP Conference Series: Materials Science and Engineering, 1037, 012024. https://doi.org/10.1088/1757-899X/1037/1/012024.

DOI: 10.1088/1757-899x/1037/1/012024

Google Scholar

[4] Siqueiros-Hernández, M., Ramírez-Arias, F.J., Colores-Vargas, J.M., Avila-Puc, M., Delgado-Hernández, A., Mesa, F., González-Vizcarra, B., & Cruz-Vazquez, L. (2017). Microstructure and mechanical properties correlation for the steel: A comparative methodology of educational research for physics and mechanical engineering trainings. International Journal of Physical Sciences, 12(23), 322-328. https://doi.org/10.5897/ijps2017.4687.

DOI: 10.5897/ijps2017.4687

Google Scholar

[5] Hu, J., Du, L.-X., Xie, H., Gao, X.-H., & Misra, R. D. K. (2014). Microstructure and mechanical properties of TMCP heavy plate microalloyed steel. Materials Science and Engineering: A, 607, 122-131. https://doi.org/10.1016/j.msea.2014.03.133.

DOI: 10.1016/j.msea.2014.03.133

Google Scholar

[6] Geng, X., Jiang, Z.H., Liu, F.B., & Peng, H. (2009). Manufacturing of Heavy Plates with Excellent Mechanical Properties by a 40t ESR Furnace for Slab Products. Advanced Materials Research, 79-82, 1747-1750. https://doi.org/10.4028/www.scientific.net/AMR.79-82.1747.

DOI: 10.4028/www.scientific.net/amr.79-82.1747

Google Scholar

[7] Murari, F.D., Dos Santos, A.A., Silva, V.C, & Rodriguez-Ibabe, J. (2019). The effect of reheating temperature on the dissolution of precipitates and on the mechanical properties of microalloyed steel heavy plates. Proceedings of 11th International Rolling Conference, part of the ABM Week (October 1st-3rd, 2019). São Paulo, SP, Brazil: ABM Proceedings.

DOI: 10.4322/2176-1523.20202232

Google Scholar

[8] Zurnadzhy, V.I., Efremenko, V.G., Petryshynets, I., Shimizu, K., Brykov, M.N., Kushchenko, I.V., & Kudin, V.V. (2020). Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters. Kovove Materialy, 58(2), 129-140. https://doi.org/10.4149/km2020_2_129.

DOI: 10.4149/km_2020_2_129

Google Scholar

[9] Malinov, L.S., Malysheva, I.E., Klimov, E.S., Kukhar, V.V., & Balalayeva, E.Yu. (2019). Effect of Particular Combinations of Quenching, Tempering and Carburization on Abrasive Wear of Low-Carbon Manganese Steels with Metastable Austenite. Materials Science Forum, 945, 574-578. https://doi.org/10.4028/www.scientific.net/MSF.945.574.

DOI: 10.4028/www.scientific.net/msf.945.574

Google Scholar

[10] Artiukh, V., Kukhar, V., & Balalayeva, E.. (2018). Refinement issue of displaced volume at upsetting of cylindrical workpiece by radial dies. MATEC Web of Conferences, 224, 01036. https://doi.org/10.1051/matecconf/201822401036.

DOI: 10.1051/matecconf/201822401036

Google Scholar

[11] Puzyr, R., Kukhar, V., Maslov, A., & Shchipkovskyi, Y. (2018). The Development of the Method for the Calculation of the Shaping Force in the Production of Vehicle Wheel Rims. International Journal of Engineering & Technology (UAE), 7(4.3), 30-34. https://doi.org/10.14419/ijet.v7i4.3.20128.

DOI: 10.14419/ijet.v7i4.3.20128

Google Scholar

[12] Ishchenko, A., Artiukh, V., Mazur, V., Calimgareeva, A., & Gusarova, M. (2018). Experimental study of horizontal impact forces acting on equipment of thick sheet rolling stands during rolling. MATEC Web of Conference, 239, 01041. https://doi.org/10.1051/matecconf/201823901041.

DOI: 10.1051/matecconf/201823901041

Google Scholar

[13] Oginskyy, Y.K. (2011). The force pattern in the deformation zone at steady rolling process, Metallurgical and Mining Industry, 3(1), 10-14.

Google Scholar

[14] Dzyubyk, A., Sudakov, A., Dzyubyk, L., & Sudakova, D. (2019). Ensuring the specified position of multisupport rotating units when dressing mineral resources. Mining of Mineral Deposits, 13(4), 91-98. https://doi.org/10.33271/mining13.04.091.

DOI: 10.33271/mining13.04.091

Google Scholar

[15] Kaplanov, V.I., & Prisyazhnyi, A.G. (2008). Simulation of contact friction in the hot rolling of steel sheet, Steel in Translation, 38(9), 714-718. https://doi.org/10.3103/S0967091208090040.

DOI: 10.3103/s0967091208090040

Google Scholar

[16] Wang, X.Q., Yuan, G., Zhao, J.H., & Wang, G.D. (2020). Microstructure and Strengthening/Toughening Mechanisms of Heavy Gauge Pipeline Steel Processed by Ultrafast Cooling. Metals, 10(10), 1323. https://doi.org/10.3390/met10101323.

DOI: 10.3390/met10101323

Google Scholar

[17] Zhou, F., Dai, J., Gao, J., Zhou, Q., & Li, L. (2020). The X80 Pipeline Steel produced by a Novel Ultra Fast Cooling Process. Journal of Physics: Conference Series, 1676, 012102. https://doi.org/10.1088/1742-6596/1676/1/012102.

DOI: 10.1088/1742-6596/1676/1/012102

Google Scholar

[18] Li, Z., Li, Z., & Tian, W. (2021). Strengthening Effect of Nb on Ferrite Grain Boundary in X70 Pipeline Steel. Materials, 2021, 14(1), 61. https://doi.org/10.3390/ma14010061.

DOI: 10.3390/ma14010061

Google Scholar

[19] Markov, O. E., Gerasimenko, O. V., Shapoval, A. A., Abdulov, O. R., & Zhytnikov, R. U. Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings. International Journal of Advanced Manufacturing Technology, 103(5-8), 3057-3065. https://doi.org/10.1007/s00170-019-03749-4.

DOI: 10.1007/s00170-019-03749-4

Google Scholar

[20] Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., & Dragobetskii, V. (2018). Improvement of the Method for Calculation the Metal Temperature Loss on a Coilbox Unit at the Rolling on Hot Strip Mills. International Journal of Engineering & Technology (UAE), 7(4.3), 35-39. https://doi.org/10.14419/ijet.v7i4.3.19548.

DOI: 10.14419/ijet.v7i4.3.19548

Google Scholar

[21] Zhou, T., Yu, H., & Wang, S. (2017). Microstructural Characterization and Mechanical Properties across Thickness of Ultra-Heavy Steel Plate. Steel Research International, 87(9999), 1700132. https://doi.org/10.1002/srin.201700132.

DOI: 10.1002/srin.201700132

Google Scholar

[22] Salganik, V.M., Chikishev, D.N., Pozhidaeva, E.B., & Nabatchikov, D.G. (2016). Analysis of Structural and Phase Transformations in Low-Alloy Steels Based on Dilatometric Studies. Metallurgist, 59(9-10), 766-773. https://doi.org/10.1007/s11015-016-0172-3.

DOI: 10.1007/s11015-016-0172-3

Google Scholar

[23] Anishchenko, A.S. (1996). Heat treatment effect on properties of deformed alloy type 36N, Metallovedenie i Termicheskaya Obrabotka Metallov, 4, 31-32.

Google Scholar

[24] Wang, B., Wang, Z.D.; Wang, B.X., Wang, G.D., Misra, R.D.K. (2015). The Relationship Between Microstructural Evolution and Mechanical Properties of Heavy Plate of Low-Mn Steel During Ultra Fast Cooling. Metallurgical and Materials Transactions A, 46(7), 2834-2843. https://doi.org/10.1007/s11661-015-2933-1.

DOI: 10.1007/s11661-015-2933-1

Google Scholar

[25] Salganik, V.M.; Chikishev, D.N., & Pozhidaeva, E.B. (2016). Influence of Steel Chemical Composition and Modes of the Thermomechanical Treatment on Mechanical Properties of a Hot Rolled Plate. Materials Science Forum, 870, 584-592. https://doi.org/10.4028/www.scientific.net/MSF.870.584.

DOI: 10.4028/www.scientific.net/msf.870.584

Google Scholar

[26] Salganik, V.M., Shmakov, A.V., & Popov, V.V. (2009). Rational controlled rolling on a 5000 pipe-blank mill at reduced temperature. Steel in Translation, 39(10), 906-911. https://doi.org/10.3103/s0967091209100155.

DOI: 10.3103/s0967091209100155

Google Scholar

[27] Park, I.A., Kang, N.H., Cho, K.M., Kim, S.Y., & Lee, Y.J. (2007). Microstructure and Mechanical Properties of Control Rolled Fe-01C-(V,Nb) Steels. Journal of the Korean Institute of Metals and Materials, 45(5), 321-328.

Google Scholar

[28] Barber, B., Smith, A.W.A., Komenda, J., Huemer, K., Luzzo, I., Ridolfi, M.R., Di Nunzio, P.E., Colla, V., Vannucci, M., Sancho, L., Diaz, A., Laine, J., & Kytonen, H. (2008). Prediction of rolled product properties by correlation with as-cast structure and rolled product/plant process variables, including segregation modelling: Project report. Retrieved from Office for Official Publications of the European Communities, Luxembourg, 155 p. http://publications.europa.eu/resource/cellar/c1f33cd7-2b95-489a-9b25-5b2245ec6881.0001.02/DOC_1.

Google Scholar

[29] Gorbachev, I.I., Popov, V.V., & Pasynkov, A.Yu. (2015). Simulation of precipitate ensemble evolution in steels with V and Nb. The Physics of Metals and Metallography, 116(4), 356-366. https://doi.org/10.1134/s0031918x15040067.

DOI: 10.1134/s0031918x15040067

Google Scholar

[30] Salganik, V., Shmakov, A., Pesin, A., Pustovoytov, D., Barlat, F., Moon, Y.H., & Lee, M.G. (2010). Plate Rolling Modeling at Mill 5000 of OJSC Magnitogorsk Iron and Steel, for Analysis and Optimization of Temperature Rates. Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes (pp.602-607). Pohang, Republic of Korea: AIP Conference Proceedings, 13-17 June 2010. https://doi.org/10.1063/1.3457609.

DOI: 10.1063/1.3457609

Google Scholar

[31] Pesin, A., Tandon, P., Pustovoytov, D., Korchunov, A., Pesin, I., & Dubey, A. (2020). Numerical Modelling and Development of New Technical Solutions in Metallurgy and Material Processing. Solid State Phenomena, 304, 113-119. https://doi.org/10.4028/www.scientific.net/SSP.304.113.

DOI: 10.4028/www.scientific.net/ssp.304.113

Google Scholar

[32] Li, H., Li, J., Sun, Q., & Zhao, F. (2019). Intelligent prediction method of mechanical property based on hybrid driving of industrial data and mechanism model for high speed wire. IOP Conference Series: Earth and Environmental Science, 332, 032043. https://doi.org/10.1088/1755-1315/332/3/032043.

DOI: 10.1088/1755-1315/332/3/032043

Google Scholar

[33] Jing, Y., Hu, X., Hu, L., & Zhang, Y. (2002). Application of artificial neural network to prediction of mechanical properties of hot rolled heavy plate. Kang T'ieh/Iron and Steel (Peking), 37(9), 26-30.

Google Scholar