Comparative Studies on Mechanical Performance of Epoxy and Polyester Hybrid Composites with Jute and Glass Layers

Article Preview

Abstract:

The natural fibers are the alternative to glass and other human-made fibers, because of their low cost and readily available from natural resources and acts as a reinforcing material for the polymer composites. Jute is the most widely used natural fibers among the various fibers due to its superior characteristics. Composite materials are made with different materials that are physically and chemically different alienated by interfaces. In this work, epoxy and polyester hybrid composites reinforced with jute and glass fiber were fabricated by hydraulic press method and their tensile and impact properties were compared. The mechanical properties of jute/glass hybrid composites with different layers such as tensile strength, percentage of elongation and impact strength were evaluated using ASTM specifications. Tensile and Charpy impact test results indicated that jute/glass fiber reinforced epoxy composites have shown optimum properties than polyester composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

226-230

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nallusamy, S., & Majumdar, G. (2016). Effect of Stacking Sequence and Hybridization on Mechanical Properties of Jute-Glass Fiber Composites. International Journal of Performability Engineering, 12(3), 229-239. https://doi.org/10.23940/IJPE.16.3.P229.MAG.

Google Scholar

[2] Saw, S. K., Akhtar, K., Yadav, N., & Singh, A. K. (2014). Hybrid composites made from jute/coir fibers: Water absorption, thickness swelling, density, morphology, and mechanical properties. Journal of Natural Fibers, 11(1), 39-53.

DOI: 10.1080/15440478.2013.825067

Google Scholar

[3] Abdellaoui, H., Bensalah, H., Echaabi, J., Bouhfid, R., & Qaiss, A. (2015). Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Materials and Design, 68, 104-113. https://doi.org/10.1016/j.matdes.2014.11.059.

DOI: 10.1016/j.matdes.2014.11.059

Google Scholar

[4] Aseer, J.R., Sankaranarayanasamy, K., Jayabalan, P., Natarajan, R., & Dasan, K.P. (2015). Mechanical and water absorption properties of municipal solid waste and banana fiber-reinforced urea formaldehyde composites. Environmental Progress and Sustainable Energy, 34(1), 211-221. https://doi.org/10.1002/ep.11966.

DOI: 10.1002/ep.11966

Google Scholar

[5] Petrucci, R., Santulli, C., Puglia, D., Sarasini, F., Torre, L., & Kenny, J.M. (2013). Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Materials and Design, 49, 728-735. https://doi.org/10.1016/j.matdes.2013.02.014.

DOI: 10.1016/j.matdes.2013.02.014

Google Scholar

[6] Ramesh, M., Palanikumar, K., & Reddy, K.H. (2013). Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Composites Part B: Engineering, 48, 1-9. https://doi.org/10.1016/j.compositesb.2012.12.004.

DOI: 10.1016/j.compositesb.2012.12.004

Google Scholar

[7] Jawaid, M., Alothman, O. Y., Paridah, M.T., Khalil, A., & Arabia, S. (2014). Effect of Oil Palm and Jute Fiber Treatment on Mechanical Performance of Epoxy Hybrid Composites. International Journal of Polymer Analysis and Characterization, 19(1), 62-69. https://doi.org/10.1080/1023666X.2014.858429.

DOI: 10.1080/1023666x.2014.858429

Google Scholar

[8] Ramnath, B.V., Elanchezhian, C., Nirmal, P.V, Kumar, G.P., & Kumar, V.S. (2014). Experimental Investigation of Mechanical behavior of Jute-Flax Based Glass Fiber Reinforced Composite. Fibers and Polymers, 15(6), 1251-1262. https://doi.org/10.1007/s12221-014-1251-3.

DOI: 10.1007/s12221-014-1251-3

Google Scholar

[9] Hanan, F., Jawaid, M., Tahir, P., Hanan, F., & Jawaid, M. (2020). Mechanical performance of oil palm / kenaf fiber- reinforced epoxy-based bilayer hybrid composites epoxy-based bilayer hybrid composites. Journal of Natural Fibers, 17(2), 155-167. https://doi.org/10.1080/15440478.2018.1477083.

DOI: 10.1080/15440478.2018.1477083

Google Scholar

[10] Dalbehera, S., & Acharya, S.K. (2015). Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites. Journal of Industrial Textiles, (1), 1-12. https://doi.org/10.1177/1528083715577936.

DOI: 10.1177/1528083715577936

Google Scholar

[11] Ahmed K.S, Vijayarangan S,K.A. (2007). Low Velocity Impact Damage Characterization of Woven Jute - Glass Fabric Reinforced Isothalic Polyester Hybrid Composites. Composites. Journal of Reinforced Plastics and Composites, 26(10), 959-976. https://doi.org/10.1177/0731684407079414.

DOI: 10.1177/0731684407079414

Google Scholar

[12] De Rosa, I. M., Santulli, C., Sarasini, F., & Valente, M. (2009). Post-impact damage characterization of hybrid configurations of jute/glass polyester laminates using acoustic emission and IR thermography. Composites Science and Technology, 69(7-8), 1142-1150. https://doi.org/10.1016/j.compscitech.2009.02.011.

DOI: 10.1016/j.compscitech.2009.02.011

Google Scholar

[13] Nisini, E., Santulli, C., & Liverani, A. (2017). Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Composites Part B: Engineering, 127, 92-99. https://doi.org/10.1016/j.compositesb.2016.06.071.

DOI: 10.1016/j.compositesb.2016.06.071

Google Scholar

[14] Gujjala, R., & Ojha, S. (2014). Mechanical properties of woven jute-glass hybrid-reinforced epoxy composite. Journal of Composite Materials, 48(28), 3445-34. https://doi.org/10.1177/0021998313501924.

DOI: 10.1177/0021998313501924

Google Scholar

[15] Ahmed, K.S., & Vijayarangan, S. (2008). Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. Journal of Materials Processing Technology, 207, 330-335. https://doi.org/10.1016/j.jmatprotec.2008.06.038.

DOI: 10.1016/j.jmatprotec.2008.06.038

Google Scholar

[16] John, K.N.S. (2004). Sisal Fiber / Glass Fiber Hybrid Composites: The Impact and Compressive Properties. Journal of Reinforced Plastics and Composites, 23(12), 1253-1258. https://doi.org/10.1177/0731684404035270.

DOI: 10.1177/0731684404035270

Google Scholar

[17] Assarar, M., Zouari, W., Sabhi, H., Ayad, R., & Berthelot, J. (2015). Evaluation of the damping of hybrid carbon – flax reinforced composites. Composite Structure, 132, 148-154. https://doi.org/10.1016/j.compstruct.2015.05.016.

DOI: 10.1016/j.compstruct.2015.05.016

Google Scholar

[18] Aziz, S.H., & Ansell, M.P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Composites Science and Technology, 64(9), 1231-1238. https://doi.org/10.1016/j.compscitech.2003.10.001.

DOI: 10.1016/j.compscitech.2003.10.001

Google Scholar