Synthesis and Characterization of Semiconductor Nanoparticles CuInS2 QDs/TiO2

Article Preview

Abstract:

Synthesis and characterization of CuInS2 quantum dots (QDs) and CuInS2 QDs/TiO2 with varied temperature reaction (200; 215°C) and TiO2 precursor concentrations was conducted using wet chemical method. The as-synthesized CIS with higher reaction temperature exhibited deep-red emissions and enhanced the photoluminescence (PL) intensity, indicating the reduction of surface defects. With the addition of TiO2 precursor, particle size decreased, bandgap energy increased, and the absorption edge shifted to the blue region. The UV-Vis absorption shifting expands the light-absorbing region. CIS hybridized with 150 μl TiO2 precursor (CIS-TO 150) has particle size 2.15 nm with tetragonal chalcopyrite crystal structure and bandgap energy 2.72 eV. This property gives a great potential for wide range of application via photocatalytic mechanism under visible light.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

10-16

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kolny-Olesiak and H. Weller, Synthesis and application of colloidal CuInS2 semiconductor nanocrystals,, ACS Appl. Mater. Interfaces, vol. 5, no. 23, p.12221–12237, (2013).

DOI: 10.1021/am404084d

Google Scholar

[2] L. Liu, H. Li, Z. Liu, and Y. H. Xie, The conversion of CuInS 2 /ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance,, J. Colloid Interface Sci., vol. 546, p.276–284, (2019).

DOI: 10.1016/j.jcis.2019.03.075

Google Scholar

[3] S. Suehiro et al., Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals,, J. Asian Ceram. Soc., vol. 4, no. 3, p.319–323, (2016).

DOI: 10.1016/j.jascer.2016.06.002

Google Scholar

[4] G. Xu, S. Zeng, B. Zhang, M. T. Swihart, K. T. Yong, and P. N. Prasad, New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine,, Chem. Rev., vol. 116, no. 19, p.12234–12327, (2016).

DOI: 10.1021/acs.chemrev.6b00290

Google Scholar

[5] H. Nakamura et al., Tunable photoluminescence wavelength of chalcopyrite CuInS 2-based semiconductor nanocrystals synthesized in a colloidal system,, Chem. Mater., vol. 18, no. 14, p.3330–3335, (2006).

DOI: 10.1021/cm0518022

Google Scholar

[6] P. H. Chuang, C. C. Lin, and R. S. Liu, Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,, ACS Appl. Mater. Interfaces, vol. 6, no. 17, p.15379–15387, (2014).

DOI: 10.1021/am503889z

Google Scholar

[7] M. Booth, A. P. Brown, S. D. Evans, and K. Critchley, Determining the concentration of CuInS 2 quantum dots from the size-dependent molar extinction coefficient,, Chem. Mater., vol. 24, no. 11, p.2064–2070, (2012).

DOI: 10.1021/cm300227b

Google Scholar

[8] Z. Long, W. Zhang, J. Tian, G. Chen, Y. Liu, and R. Liu, Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2quantum dots,, Inorg. Chem. Front., vol. 8, no. 4, p.880–897, (2021).

DOI: 10.1039/d0qi01228a

Google Scholar

[9] B. L. Wu, H. J. Chao, C. P. Chen, C. H. Yang, and J. Y. Chang, One-pot synthesis of colloidal Cdx:CuInS2 quaternary quantum dots used as sensitizers in photovoltaic cells,, RSC Adv., vol. 5, no. 46, p.36605–36613, (2015).

DOI: 10.1039/c5ra04275e

Google Scholar

[10] Y. Yan et al., CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production,, Ceram. Int., vol. 45, no. 5, p.6093–6101, (2019).

DOI: 10.1016/j.ceramint.2018.12.083

Google Scholar

[11] M. Gromova et al., Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol,, J. Am. Chem. Soc., vol. 139, no. 44, p.15748–15759, (2017).

DOI: 10.1021/jacs.7b07401

Google Scholar

[12] M. Fu, W. Luan, S. T. Tu, and L. Mleczko, Green Synthesis of CuInS2/ZnS Nanocrystals with High Photoluminescence and Stability,, J. Nanomater., vol. 2015, (2015).

DOI: 10.1155/2015/842365

Google Scholar

[13] K. Kumamoto, K. Tsuchibashi, A. D. Pramata, M. Yuasa, K. Shimanoe, and T. Kida, Visible Light-Driven Photoenergy Storage and Photocatalysis Using Polyoxometallates Coupled with a Ru Complex,, J. Phys. Chem. C, vol. 121, no. 25, p.13515–13523, (2017).

DOI: 10.1021/acs.jpcc.7b02484

Google Scholar

[14] V. Rodríguez-González, S. Obregón, O. A. Patrón-Soberano, C. Terashima, and A. Fujishima, An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes,, Appl. Catal. B Environ., vol. 270, no. January, p.118853, (2020).

DOI: 10.1016/j.apcatb.2020.118853

Google Scholar

[15] J. Hua et al., Composition-dependent photoluminescence properties of CuInS2/ZnS core/shell quantum dots,, Phys. B Condens. Matter, vol. 491, p.46–50, (2016).

DOI: 10.1016/j.physb.2016.03.025

Google Scholar

[16] H. Li, X. Jiang, A. Wang, X. Chu, and Z. Du, Simple Synthesis of CuInS2/ZnS Core/Shell Quantum Dots for White Light-Emitting Diodes,, Front. Chem., vol. 8, no. August, p.1–9, (2020).

DOI: 10.3389/fchem.2020.00669

Google Scholar

[17] T. Kida, H. Furuso, K. Kumamoto, A. D. Pramata, M. Yuasa, and K. Shimanoe, Visible-light sensitization and photoenergy storage in quantum dot/polyoxometalate systems,, Chem. - A Eur. J., vol. 21, no. 20, p.7462–7469, (2015).

DOI: 10.1002/chem.201500021

Google Scholar

[18] J. Van Embden, A. S. R. Chesman, and J. J. Jasieniak, The heat-up synthesis of colloidal nanocrystals,, Chem. Mater., vol. 27, no. 7, p.2246–2285, (2015).

DOI: 10.1021/cm5028964

Google Scholar

[19] M. Booth, Synthesis and Characterisation of CuInS 2 Quantum Dots Determining the Concentration of CuInS 2 Quantum Dots from the Size-Dependent Molar Extinction Coefficient, Chemistry of Materials,, J. Phys. Chem. C, p.1–164, (2014).

DOI: 10.1021/cm300227b

Google Scholar

[20] S. G. Kwon and T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,, Small, vol. 7, no. 19, p.2685–2702, (2011).

DOI: 10.1002/smll.201002022

Google Scholar

[21] P. Reiss, M. Protière, and L. Li, Core/shell semiconductor nanocrystals,, Small, vol. 5, no. 2, p.154–168, (2009).

DOI: 10.1002/smll.200800841

Google Scholar

[22] S. C. Shei, W. J. Chiang, and S. J. Chang, Synthesis of CuInS2 quantum dots using polyetheramine as solvent,, Nanoscale Res. Lett., vol. 10, no. 1, p.4–10, (2015).

DOI: 10.1186/s11671-015-0789-3

Google Scholar