[1]
T. Maxwell, M. G. Nogueira Campos, S. Smith, M. Doomra, Z. Thwin, and S. Santra, Quantum dots. Elsevier Inc., 2019, p.243, doi : 10.1016/B978-0-12-816662-8.00015-1.
DOI: 10.1016/b978-0-12-816662-8.00015-1
Google Scholar
[2]
N. H. Hong, Introduction to Nanomaterials: Basic Properties, Synthesis, and Characterization. Elsevier Inc., 2018, pp.3-5,.
Google Scholar
[3]
L. Xiong et al., Size-controlled synthesis of Cu2O nanoparticles: Size effect on antibacterial activity and application as a photocatalyst for highly efficient H2O2 evolution,, RSC Adv., vol. 7, no. 82, p.51822–51830, 2017,.
DOI: 10.1039/c7ra10605j
Google Scholar
[4]
L. Xiong, S. Huang, X. Yang, M. Qiu, Z. Chen, and Y. Yu, P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties,, Electrochim. Acta, vol. 56, no. 6, p.2735–2739, 2011,.
DOI: 10.1016/j.electacta.2010.12.054
Google Scholar
[5]
L. Xiong et al., A fast and simplified synthesis of cuprous oxide nanoparticles: anneal studies and photocatalytic activity,, RSC Ad,.
Google Scholar
[6]
C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D'Incau, P. Scardi, and A. Mittiga, Absorption coefficient of bulk and thin film Cu2O,, Sol. Energy Mater. Sol. Cells, vol. 95, no. 10, p.2848–2854, 2011,.
DOI: 10.1016/j.solmat.2011.05.047
Google Scholar
[7]
S. AlYahya et al., Size dependent magnetic and antibacterial properties of solvothermally synthesized cuprous oxide (Cu2O) nanocubes,, J. Mater. Sci. Mater. Electron., vol. 29, no. 20, p.17622–17629, 2018,.
DOI: 10.1007/s10854-018-9865-7
Google Scholar
[8]
S. S. Sawant, A. D. Bhagwat, C. M. Mahajan, P. Bari, and J. Rajasthan, Synthesis of Cuprous Oxide ( Cu 2 O ) Nanoparticles – a Review The Cuprous Oxide ( Cu 2 O ) is semiconductor metal which is nontoxic , low cost and has abundant source materials . Cu 2 O has gained a renewed interest for various technological applications,, J. Nano- Electron. Phys., vol. 8, no. 1, p.1–5, 2016, doi : 10.21272/jnep.8(1).01035.
DOI: 10.21272/jnep.8(1).01035
Google Scholar
[9]
K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, and T. Kida, Synthesis of Cu 2 O/CuO nanocrystals and their application to H 2 S sensing,, Sensors (Switzerland), vol. 19, no. 1, 2019,.
DOI: 10.3390/s19010211
Google Scholar
[10]
T. Kida, H. Furuso, K. Kumamoto, A. D. Pramata, M. Yuasa, and K. Shimanoe, Visible-light sensitization and photoenergy storage in quantum dot/polyoxometalate systems,, Chem. - A Eur. J., vol. 21, no. 20, p.7462–7469, 2015,.
DOI: 10.1002/chem.201500021
Google Scholar
[11]
K. Kumamoto, K. Tsuchibashi, A. D. Pramata, M. Yuasa, K. Shimanoe, and T. Kida, Visible Light-Driven Photoenergy Storage and Photocatalysis Using Polyoxometallates Coupled with a Ru Complex,, J. Phys. Chem. C, vol. 121, no. 25, p.13515–13523, 2017,.
DOI: 10.1021/acs.jpcc.7b02484
Google Scholar
[12]
S. Suehiro et al., Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals,, J. Asian Ceram. Soc., vol. 4, no. 3, p.319–323, 2016,.
DOI: 10.1016/j.jascer.2016.06.002
Google Scholar
[13]
M. Su, J. Cao, X. Tian, Y. Zhang, and H. Zhao, Mechanism and kinetics of Cu2O oxidation in chemical looping with oxygen uncoupling,, Proc. Combust. Inst., vol. 37, no. 4, p.4371–4378, 2019,.
DOI: 10.1016/j.proci.2018.06.162
Google Scholar
[14]
D. Chen, Y. Li, X. Dai, H. Du, J. Lin, and Y. Jin, Synthesis of Highly Monodisperse Cu2O Nanocrystals and Their Applications as Hole-Transporting Layers in Solution-Processed Light-Emitting Diodes,, Chem. - A Eur. J., vol. 25, no. 65, p.14767–14770, 2019,.
DOI: 10.1002/chem.201903094
Google Scholar
[15]
W. Tong, H. Katz-Boon, M. J. Walsh, M. Weyland, J. Etheridge, and A. M. Funston, The evolution of size, shape, and surface morphology of gold nanorods,, Chem. Commun., vol. 54, no. 24, p.3022–3025, 2018,.
DOI: 10.1039/c7cc08336j
Google Scholar
[16]
M. Baek, E. J. Kim, S. W. Hong, W. Kim, and K. Yong, Environmentally benign synthesis of CuInS2/ZnO heteronanorods: Visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism,, Photochem. Photobiol. Sci., vol. 16, no. 12, p.1792–1800, 2017,.
DOI: 10.1039/c7pp00248c
Google Scholar
[17]
J. Linnera, G. Sansone, L. Maschio, and A. J. Karttunen, Thermoelectric Properties of p-Type Cu2O, CuO, and NiO from Hybrid Density Functional Theory,, J. Phys. Chem. C, vol. 122, no. 27, p.15180–15189, 2018,.
DOI: 10.1021/acs.jpcc.8b04281
Google Scholar
[18]
S. . Butte, Optical properties of Cu2O and CuO,, vol. 08, no. 20207002, pp.020009-020093–5, 2020,.
Google Scholar
[19]
K. R. Basavalingaiah, Synthesis Of Cu2O/Ag Composite Nanocubes With Promising Photoluminescence And Photodegradation Activity Over Methylene Blue Dye,, Adv. Mater. Lett., vol. 10, no. 11, p.832–838, 2019,.
DOI: 10.5185/amlett.2019.0032
Google Scholar