[1]
S. Jovan1, Lichen Bioindication of Biodiversity, Air Quality, and Climate: Baseline Results from Monitoring in Washington, Oregon, and California, Portland, Oregon, USA: Forestry Sciences Laboratory,, (2008).
DOI: 10.2737/pnw-gtr-737
Google Scholar
[2]
S. Kuldeep and B. Prodyut, Lichen as a Bio-Indicator Tool for Assessment of Climate and Air Pollution Vulnerability: Review,, International Research Journal of Environment Sciences, pp. Vol. 4(12), pp.107-117, (2015).
Google Scholar
[3]
R. Rosentreter, D. J. Eldridge, M. Westberg, L. Williams and M. Grube, Structure, Composition, and Function of Biocrust Lichen Communities,, in Biological Soil Crusts: An Organizing Principle in Drylands, Ecological Studies, Switzerland , Springer International Publishing Switzerland , 2016, pp. pp.121-138.
DOI: 10.1007/978-3-319-30214-0_7
Google Scholar
[4]
G. Brunialti and L. Frati, Bioaccumulation with Lichens: the Italian Experience,, International Journal of Environmental Studies, pp. Vol 71 (1) : pp.15-26, (2014).
DOI: 10.1080/00207233.2014.880996
Google Scholar
[5]
K. Affeld, J. Sullivan, S. P. Worner and R. K. Didham, Can Spatial Variation in Epiphyte Diversity and Community Structure be Predicted from Sampling Vascular Epiphytes Alone?,, Journal of Biogeography (J. Biogeogr.), pp. Vol 35, pp.2274-2288, (2008).
DOI: 10.1111/j.1365-2699.2008.01949.x
Google Scholar
[6]
K. Articus, Phylogenetic Studies in Usnea (Parmeliaceae) and Allied Genera,, Acta Universitatis Upsaliensis, Uppsala, (2004).
Google Scholar
[7]
J. Bolliger, A. Bergamini, S. Stofer, F. Kienast and C. Scheidegger, Predicting the Potential Spatial Distributions of Epiphytic Lichen Species at the Landscape Scale,, The Lichenologist, p. Vol 39(3): pp.279-291 , (2007).
DOI: 10.1017/s0024282907006652
Google Scholar
[8]
S. Jovan and B. McCune, AI air Quality Bioindication In The Greater Central Valley Of California, With Epiphytic Macrolichen Communities,, Ecological Applications, 15(5), 2005, pp.1712-1726, pp. Vol 15(5), 2; pp.1712-1726, (2005).
DOI: 10.1890/03-5368
Google Scholar
[9]
K. Kinalioglu, A. Horuz, H. G. Kutbay, A. Bilgin and E. Yalcin, Accumulation of Some Heavy Metals in Lichens in Giresun City, turkey,, Ekologia (Bratislava), pp. pp.306-313, (2006).
Google Scholar
[10]
S. Ozturk and S. Oran, Investigations on the Bark pH and Epiphytic Lichen Diversity of Quercus Taxa Found in Marmara Region,, Journal of Applied Biological Sciences, vol. 5 , no. 13, pp. pp.27-33, (2011).
Google Scholar
[11]
R. A. Armstrong and T. Bradwell, Growth of Foliose Lichens: a Review,, Symbiosis , p. Vol 53: pp.1-16, (2011).
DOI: 10.1007/s13199-011-0108-4
Google Scholar
[12]
N. Stapper and V. John, Monitoring Climate Change with Lichens as Bioindicators,, Pollution Atmospherique , pp. pp.1-12, (2015).
Google Scholar
[13]
A. Ugur, B. Ozden, M. S. G. Yener, U. Altunbas, Y. Karucu and M. Bolca, Lichen and Mosses for Correlation between Trace Elements and 210Po in the Areas Near Coal Fired Power Plants at Yatagan, Turkey,, Journal of Radioanalytical and Nuclear Chemistry, pp. Vol. 259, No. 1 : pp.87-92, (2004).
DOI: 10.1023/b:jrnc.0000015811.68036.69
Google Scholar
[14]
M. D. Gibson, M. R. Heal, Z. Li, J. Kuchta, G. H. King, A. Hayes and S. Lambert, The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the Association with Lichen Abundance,, Atmospheric Environment , pp. Vol 64 ; pp.303-311, (2013).
DOI: 10.1016/j.atmosenv.2012.09.068
Google Scholar
[15]
A. Hasairin and R. Siregar, The analysis of level of lead (Pb) on lichens as a bioindicator of air quality in Medan Industrial Area and Pinang Baris Integrated Terminal in Medan, Indonesia,, in The 4th International Seminar on Sciences, Bogor, Indonesia, (2018).
DOI: 10.1088/1755-1315/187/1/012029
Google Scholar
[16]
G. Sujetoviene and I. Sliumpaite, Response of Evernia prunastri Transplanted to an Urban Area in Central Lithuania,, Atmospheric Pollution Research , p. Vol 4 : pp.222-228, (2013).
DOI: 10.5094/apr.2013.023
Google Scholar
[17]
M. C. Vitarana, Lichens as a Biomonitoring Tool for Detecting Heavy Metal Air Pollution Associated with Industrial Activities in Collie, South-western Australia,, Edith Cowan University, Joondalup, Australia, (2013).
Google Scholar
[18]
T. Elkiey and P. Ormrod, Sorption of Ozone and Sulfur Dioxide by Petunia Leaves,, Joutnal Environmental Quality, pp. Vol 9 (1) : pp.93-95, (1980).
DOI: 10.2134/jeq1980.00472425000900010021x
Google Scholar
[19]
K. Puckett, E. Nieboer, W. Flora and D. Richardson, Sulphur Dioxide : Its Effects on Photosynthetic 14C Fixation in Lichens and Suggested Mechanisms of Phytotoxicity,, New Phytol, pp. Vol 72 : pp.141-154, (1973).
DOI: 10.1111/j.1469-8137.1973.tb02019.x
Google Scholar
[20]
F. Theakston, Air Quality Guidelines for Europe (second edition), Copenhagen, Denmark: World Health Organization (WHO), (2020).
Google Scholar
[21]
D. A. F. Sampe, J. M.-D. Awuy, T. K. M. Sekar, S. F. Wijaya, A. Z. Ananda, D. T. Marella, P. M. Tampubolon and R. Lestari, Pilot study of air quality index assessment of nitrogen pollutant using lichen as bioindicators in Jakarta and Depok, Indonesia,, in The 1st JESSD Symposium 2020, Jakarta, Indonesia, (2020).
DOI: 10.1051/e3sconf/202021102014
Google Scholar
[22]
R. O. Khastini, I. J. Sari, Y. Herysca and S. Sulasanah, Lichen Diversity as Indicators for Monitoring Ecosystem Health in Rawa Danau Nature Reserve, Banten, Indonesia,, Biodiversitas, vol. 20, no. 2, pp. pp.489-496, (2019).
DOI: 10.13057/biodiv/d200227
Google Scholar
[23]
M. O. Al-Jahdali and A. S. B. Bisher, Sulfur Dioxide (SO2) Accumulation in Soil and Plant's Leaves around an Oil Refinery: A Case Study from Saudi Arabia,, American Journal of Environmental Sciences , pp. Vol 4 (1): pp.84-88, (2008).
DOI: 10.3844/ajessp.2008.84.88
Google Scholar
[24]
A. Guttová, A. Lackovicˇová, I. Pišút and P. Pišút, Decrease in air pollution load in Urban Environment of Bratislava (Slovakia) Inferred from Accumulation of Metal Elements in Lichens,, Environ Monit Assess , p. Vol 182: pp.361-373, (2011).
DOI: 10.1007/s10661-011-1881-5
Google Scholar
[25]
J. Campbell and A. Fredeen, Lobaria pulmonaria as an Indicator of Macrolichen Diversity in Interior Cedar - Hemlock Forest of east central British Columbia,, Canadian Journal of Botany, pp. pp.970-982, (2011).
DOI: 10.1139/b04-074
Google Scholar
[26]
D. K. Upreti, R. Bajpai and S. Nayaka, Lichenology: Current Research in India,, in Plant Biology and Biotechnology Bir Bahadur · Manchikatla Venkat Rajam Leela Sahijram · K.V. Krishnamurthy Editors Volume I: Plant Diversity, Organization, Function and Improvement, Uttar Pradesh, India, Springer, 2020, pp. pp.263-280.
DOI: 10.1007/978-81-322-2286-6_10
Google Scholar
[27]
E. Roziaty, Sutarno, S. Suntoro and Sugiyarto, Ecological indices on Lichen biodiversity in three main different areas (the cities, countrysides and the forests) of Jogjakarta and Surakarta, Central Java, Indonesia,, Eurasian Journal of Bioscience, vol. 14, no. 2, pp. pp.4543-4550, (2020).
Google Scholar
[28]
J. Garty, O. Tamir, I. Hassid, A. Eshel, Y. Cohen, A. Karnieli and L. Orlovsky, Photosynthesis, Chlorophyll Integrity, and Spectral Reflectance in Lichens Exposed to Air Pollution,, J. Environ. Qual., p. Vol 30: pp.884-893 , (2001).
DOI: 10.2134/jeq2001.303884x
Google Scholar
[29]
G. Shrestha, S. L. Petersen and L. L. S. Clair, Predicting the Distribution of the Air Pollution Sensitive Lichen Species Usnea hirta,, The Lichenologist , p. Vol 44(4): pp.511-521 , (2012).
DOI: 10.1017/s0024282912000060
Google Scholar