[1]
D.N.K.P. Negara, T. G.T. Nindhia, I W. Surata, F.. Hidajat, M. Sucipta, (2019), Surfaces and Interfaces, 16 (2019) 22-28.
DOI: 10.1016/j.surfin.2019.04.002
Google Scholar
[2]
D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, F. Hidajat, M. Sucipta, Textural Characteristics of Activated Carbons Derived from Tabah Bamboo Manufactured by Using H3PO4 Chemical Activation, Materials Today: Proceedings, Vol. 22 part 2, (2020) 148-155.
DOI: 10.1016/j.matpr.2019.08.030
Google Scholar
[3]
D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, Development and Application of Bamboo Activated Carbons and Their Potency as Adsorbent Material for Adsorbed Natural Gas (ANG); An Overview, Key Engineering Materials, Vol. 705 (2016) 126-130.
DOI: 10.4028/www.scientific.net/kem.705.126
Google Scholar
[4]
D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, Chemical, Strength and Microstructure Characterization of Balinese Bamboos as Activated Carbon Source for Adsorbed Natural Gas Application, IOP Conf. Ser.: Mater. Sci. Eng. 201 012033 (2017) 1-6.
DOI: 10.1088/1757-899x/201/1/012033
Google Scholar
[5]
D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, F. Hidayat, Activated Carbon Characteristics of Tabah Bamboo that Physically Activated Under Different Activation Time, IOP Conf. Series: Materials Science and Engineering, 539, 012011 (2019) 1-6.
DOI: 10.1088/1757-899x/539/1/012011
Google Scholar
[6]
M. Sucipta, D.N.K.P. Negara, T.G.T. Nindhia, and I W. Surata, Characteristic of Ampel bamboo as biomass Energy source Potential in Bali, IOP Conf. Series: Materials Science and Engineering 201,0120329 (2017) 1-5.
DOI: 10.1088/1757-899x/201/1/012032
Google Scholar
[7]
I M. Astika, D. N. K. P. Negara, C. I. P. K. Kencanawati, T. G. T. Nindhia and F. Hidajat, Proximate and morphology properties of swat bamboo activated carbon carburized under different carbonization temperature, IOP Conf. Series: Materials Science and Engineering 539, 012010 (2019) 1-6.
DOI: 10.1088/1757-899x/539/1/012010
Google Scholar
[8]
D.N.K.P. Negara, T. G. T. Nindhia, Lusiana, I M. Astika, C.I.P.K. Kencanawati. Development and Characterization of activated carbons Derived from Lignocwellulosic Material, Vol. 988 (2020)80-86.
DOI: 10.4028/www.scientific.net/msf.988.80
Google Scholar
[9]
I P. H. Wangsa, T.G.T. Nindhia, D.N.K.P. Negara, I W. Surata, Performance of activated Carbon Made from Gigantochloa Verticillata Bamboo for Biogas Purification, Materials Science Forum,1013(2020)75-79.
DOI: 10.4028/www.scientific.net/msf.1013.75
Google Scholar
[10]
M. Sucipta, D.N.K. P. Negara, T.G. T. Nindhia and I W. Surata, Morphology and Surface Characteristic of Bamboo Activated Carbon Chemically Activated under Diferent Immersion Time, Int. J. Global Energy Issues, 43, 2/3, (2021)135-146.
DOI: 10.1504/ijgei.2021.115139
Google Scholar
[11]
D.N. K. P.Negara, T.G.T. Nindhia, M. Sucipta, I W. Surata, K.S. Astrawan and I P. H. Wangsa, Simultaneous adsorption of motorcycle emissions, through bamboo-activated carbon, Int. J. Global Energy Issues, 43, 2/3(2021)199-210.
DOI: 10.1504/ijgei.2021.115144
Google Scholar
[12]
I. Stranska-Zachariasova, I. Kurniatanty, H. Gbelcova, M. Jiru, J. Rubert, T.G.T. Nindhia, C. W. D'Acunto, S.H. Sumarsono, M.I. Tan, J. Hajslova and T. Ruml, Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds, Chemistry and Biodiversity, vol. 14,2 ( 2017)pp.1-15.
DOI: 10.1002/cbdv.201600192
Google Scholar
[13]
I W. Surata, T.G.T. Nindhia, W.E. Yolanda and I G. R. Trisna, Properties of hybrid composites using coral reefs waste and coconut fiber Materials Science and Engineering, 508, 012059 (2019), 1-5.
DOI: 10.1088/1757-899x/508/1/012059
Google Scholar
[14]
I W. Surata, T. G.T. Nindhia, W.E. Yolanda, Grain size effect on tensile and flexural strength of particulate composites reinforced with Acropora waste, Materials Today: Proceedings 22 (2020) 156–161.
DOI: 10.1016/j.matpr.2019.08.031
Google Scholar
[15]
A.R. Pamungkas, I W. Surata and T.G.T. Nindhia, The Tensile and Flexural Forces of Acropora Reef Waste Particulate-Enchanced Polyester Composites, Key Engineering Materials, Vol. 896, (2021) 21-27.
DOI: 10.4028/www.scientific.net/kem.896.21
Google Scholar
[16]
T.G.T. Nindhia, Y. Koyoshi, A. Kaneko, H. Sawada, M. Ohta, S. Hirai, M. Uo, Hydroxyapatite-silk functionally graded material by pulse electric current sintering, Trends in Biomaterials and Artificial Organs, vol.22, 1, (2008)28-33.
Google Scholar
[17]
T.S. Nindhia, T.G.T. Nindhia, I W. Surata, Z. Knejzlik, and T. Ruml, Effect of feeding with herb of Erythrina variegata to biocompatibility of the cocoon fiber of wild silk moth attacus atlas for future application as biocompatible of silk sutures, Asian Journal of Pharmaceutical and Clinical Research vol.11.Special Issue 3(2018) pp.20-23.
DOI: 10.22159/ajpcr.2018.v11s3.30019
Google Scholar
[18]
T. G. T. Nindhia, Z. Knejzlik, T. Ruml, I W. Surata and T. S. Nindhia, Indigenous Indonesian Wild Silkworm Cocoon of Attacusatlas as Biocompatible Film Biomaterial, Materials Science and Engineering 204 (2017) 012011, pp.1-5.
DOI: 10.1088/1757-899x/204/1/012011
Google Scholar
[19]
T.S. Nindhia T.G.T. Nindhia, I W. Surata, Z. Knejzlik, T. Ruml, Effect of feeding with herb of Erythrina variegata to biocompatibility of the cocoon fiber of wild silk moth Attacus atlas for future application as biocompatible of silk sutures, Asian Journal of Pharmaceutical and Clinical Research, vol.11. Special Issue 3(2018) 20-23.
DOI: 10.22159/ajpcr.2018.v11s3.30019
Google Scholar
[20]
T. G. T. Nindhia, Z. Knejzlik, T. Ruml, I W. Surata and T.S. Nindhia, Indigenous Indonesian Wild Silkworm Cocoon of Attacus atlas as Biocompatible Film Biomaterial, Materials Science and Engineering, vol. 204, 1, (2017) 1-5.
DOI: 10.1088/1757-899x/204/1/012011
Google Scholar
[21]
T.G.T. Nindhia, Z. Knejzlik, T.S. Nindhia, I W. Surata and T. Ruml, Biocompatibility, Morphology, and Chemical Elements Composition of Indigenous Indonesian Wild Silkmoth Cocoon for Future Application in the Field of Biomaterial, Materials Science and Engineering 761, 012006 (2020), pp.1-6.
DOI: 10.1088/1757-899x/761/1/012006
Google Scholar
[22]
A.R. Pamungkas, T.G.T. Nindhia, I W. Surata, T.S. Nindhia, Z. Knejzlik,and T. Ruml, Tensile strength of single fiber of Antheraea pernyi cocoon prepared by various protocols, Vol. 1013 (2020) 69-74.
DOI: 10.4028/www.scientific.net/msf.1013.69
Google Scholar
[23]
I G.P.A. Suryawan, N.P.G. Suardana, I N. S. Winaya, I W. B. Suyasa, T.G. T. Nindhia, Study of stinging nettle (urtica dioica l.) Fibers reinforced green composite materials : a review, Materials Science and Engineering,vol. 201, 1, (2017) 1-7.
DOI: 10.1088/1757-899x/201/1/012001
Google Scholar
[24]
A.Widnyana, I G. Rian, I W. Surata, T.G.T. Nindhia, Tensile Properties of coconut coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer, Vol. 22, Part 2, (2020) 300-305.
DOI: 10.1016/j.matpr.2019.08.155
Google Scholar
[25]
I W. Surata, T.G.T. Nindhia and D.M. Widagdo, Promoting natural fiber from bark of Hibiscus tiliaceus as rope to reduce marine pollution from microplastic fiber yield from synthetic rope, E3S Web of Conferences 158, 04007 (2020) 1-4.
DOI: 10.1051/e3sconf/202015804007
Google Scholar
[26]
Sudarisman and Ian J. Davies, Influence of Compressive Pressure, Vacuum Pressure, and Holding Temperature Applied During Autoclave Curing on the Microstructure of Unidirectional CFRP Composites, Advanced Materials Research Vols. 41-42 (2008)323-328.
DOI: 10.4028/www.scientific.net/amr.41-42.323
Google Scholar
[27]
M.R. Ishak, Z. Leman, S.M. Sapuan, M.Y. Salleh and S. Misri, The Effect of Sea Water Treatment on The Impact and Flexural Strength of Sugar Palm Fibre Reinforced Epoxy Composites, International Journal of Mechanical and Materials Engineering, Vol. 4, 3, (2009)316-320.
Google Scholar