The Effect of Vacuum Pressure during Autoclave Curing on Tensile Strength of Epoxy Composite Reinforced Natural Fiber of Cordyline australis with Sea Water Surface Treatment

Article Preview

Abstract:

In this work the composite made from epoxy resin as a matrix and natural fiber of Cordyline australis was used as reinforcement. The fiber was prepared from the process of water retting in fresh water for 1 weeks followed by drying. The final process was soaked in sea water to understand the effect of soaked in sea water to the adhesion of the fiber and matrix. The fiber was immersed in 5 hour and also 7 hours in sea water to be compared with the fiber that is was not immersed in sea water. The curing process also consist of 2 variation processes namely hand layup and vacuum pressure. The tensile test is conducted to investigate the final product of composite. It is found that the vacuum process resulting better tensile strength (34.610 MPa) in the sample of epoxy without fiber reinforcement (19.818 MPa for hand layup). In general for composite that are made with fiber without immersion in sea water, the tensile strength for the hand layup increase with addition of fiber fraction. In the other hand the tensile strength is decrease with addition of fiber fraction for vacuum process. For the fiber reinforcement, the hand layup resulting in better reinforcement comparing the vacuum process. .

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

95-101

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.N.K.P. Negara, T. G.T. Nindhia, I W. Surata, F.. Hidajat, M. Sucipta, (2019), Surfaces and Interfaces, 16 (2019) 22-28.

DOI: 10.1016/j.surfin.2019.04.002

Google Scholar

[2] D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, F. Hidajat, M. Sucipta, Textural Characteristics of Activated Carbons Derived from Tabah Bamboo Manufactured by Using H3PO4 Chemical Activation, Materials Today: Proceedings, Vol. 22 part 2, (2020) 148-155.

DOI: 10.1016/j.matpr.2019.08.030

Google Scholar

[3] D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, Development and Application of Bamboo Activated Carbons and Their Potency as Adsorbent Material for Adsorbed Natural Gas (ANG); An Overview, Key Engineering Materials, Vol. 705 (2016) 126-130.

DOI: 10.4028/www.scientific.net/kem.705.126

Google Scholar

[4] D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, Chemical, Strength and Microstructure Characterization of Balinese Bamboos as Activated Carbon Source for Adsorbed Natural Gas Application, IOP Conf. Ser.: Mater. Sci. Eng. 201 012033 (2017) 1-6.

DOI: 10.1088/1757-899x/201/1/012033

Google Scholar

[5] D.N.K.P. Negara, T.G.T. Nindhia, I W. Surata, M. Sucipta, F. Hidayat, Activated Carbon Characteristics of Tabah Bamboo that Physically Activated Under Different Activation Time, IOP Conf. Series: Materials Science and Engineering, 539, 012011 (2019) 1-6.

DOI: 10.1088/1757-899x/539/1/012011

Google Scholar

[6] M. Sucipta, D.N.K.P. Negara, T.G.T. Nindhia, and I W. Surata, Characteristic of Ampel bamboo as biomass Energy source Potential in Bali, IOP Conf. Series: Materials Science and Engineering 201,0120329 (2017) 1-5.

DOI: 10.1088/1757-899x/201/1/012032

Google Scholar

[7] I M. Astika, D. N. K. P. Negara, C. I. P. K. Kencanawati, T. G. T. Nindhia and F. Hidajat, Proximate and morphology properties of swat bamboo activated carbon carburized under different carbonization temperature, IOP Conf. Series: Materials Science and Engineering 539, 012010 (2019) 1-6.

DOI: 10.1088/1757-899x/539/1/012010

Google Scholar

[8] D.N.K.P. Negara, T. G. T. Nindhia, Lusiana, I M. Astika, C.I.P.K. Kencanawati. Development and Characterization of activated carbons Derived from Lignocwellulosic Material, Vol. 988 (2020)80-86.

DOI: 10.4028/www.scientific.net/msf.988.80

Google Scholar

[9] I P. H. Wangsa, T.G.T. Nindhia, D.N.K.P. Negara, I W. Surata, Performance of activated Carbon Made from Gigantochloa Verticillata Bamboo for Biogas Purification, Materials Science Forum,1013(2020)75-79.

DOI: 10.4028/www.scientific.net/msf.1013.75

Google Scholar

[10] M. Sucipta, D.N.K. P. Negara, T.G. T. Nindhia and I W. Surata, Morphology and Surface Characteristic of Bamboo Activated Carbon Chemically Activated under Diferent Immersion Time, Int. J. Global Energy Issues, 43, 2/3, (2021)135-146.

DOI: 10.1504/ijgei.2021.115139

Google Scholar

[11] D.N. K. P.Negara, T.G.T. Nindhia, M. Sucipta, I W. Surata, K.S. Astrawan and I P. H. Wangsa, Simultaneous adsorption of motorcycle emissions, through bamboo-activated carbon, Int. J. Global Energy Issues, 43, 2/3(2021)199-210.

DOI: 10.1504/ijgei.2021.115144

Google Scholar

[12] I. Stranska-Zachariasova, I. Kurniatanty, H. Gbelcova, M. Jiru, J. Rubert, T.G.T. Nindhia, C. W. D'Acunto, S.H. Sumarsono, M.I. Tan, J. Hajslova and T. Ruml, Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds, Chemistry and Biodiversity, vol. 14,2 ( 2017)pp.1-15.

DOI: 10.1002/cbdv.201600192

Google Scholar

[13] I W. Surata, T.G.T. Nindhia, W.E. Yolanda and I G. R. Trisna, Properties of hybrid composites using coral reefs waste and coconut fiber Materials Science and Engineering, 508, 012059 (2019), 1-5.

DOI: 10.1088/1757-899x/508/1/012059

Google Scholar

[14] I W. Surata, T. G.T. Nindhia, W.E. Yolanda, Grain size effect on tensile and flexural strength of particulate composites reinforced with Acropora waste, Materials Today: Proceedings 22 (2020) 156–161.

DOI: 10.1016/j.matpr.2019.08.031

Google Scholar

[15] A.R. Pamungkas, I W. Surata and T.G.T. Nindhia, The Tensile and Flexural Forces of Acropora Reef Waste Particulate-Enchanced Polyester Composites, Key Engineering Materials, Vol. 896, (2021) 21-27.

DOI: 10.4028/www.scientific.net/kem.896.21

Google Scholar

[16] T.G.T. Nindhia, Y. Koyoshi, A. Kaneko, H. Sawada, M. Ohta, S. Hirai, M. Uo, Hydroxyapatite-silk functionally graded material by pulse electric current sintering, Trends in Biomaterials and Artificial Organs, vol.22, 1, (2008)28-33.

Google Scholar

[17] T.S. Nindhia, T.G.T. Nindhia, I W. Surata, Z. Knejzlik, and T. Ruml, Effect of feeding with herb of Erythrina variegata to biocompatibility of the cocoon fiber of wild silk moth attacus atlas for future application as biocompatible of silk sutures, Asian Journal of Pharmaceutical and Clinical Research vol.11.Special Issue 3(2018) pp.20-23.

DOI: 10.22159/ajpcr.2018.v11s3.30019

Google Scholar

[18] T. G. T. Nindhia, Z. Knejzlik, T. Ruml, I W. Surata and T. S. Nindhia, Indigenous Indonesian Wild Silkworm Cocoon of Attacusatlas as Biocompatible Film Biomaterial, Materials Science and Engineering 204 (2017) 012011, pp.1-5.

DOI: 10.1088/1757-899x/204/1/012011

Google Scholar

[19] T.S. Nindhia T.G.T. Nindhia, I W. Surata, Z. Knejzlik, T. Ruml, Effect of feeding with herb of Erythrina variegata to biocompatibility of the cocoon fiber of wild silk moth Attacus atlas for future application as biocompatible of silk sutures, Asian Journal of Pharmaceutical and Clinical Research, vol.11. Special Issue 3(2018) 20-23.

DOI: 10.22159/ajpcr.2018.v11s3.30019

Google Scholar

[20] T. G. T. Nindhia, Z. Knejzlik, T. Ruml, I W. Surata and T.S. Nindhia, Indigenous Indonesian Wild Silkworm Cocoon of Attacus atlas as Biocompatible Film Biomaterial, Materials Science and Engineering, vol. 204, 1, (2017) 1-5.

DOI: 10.1088/1757-899x/204/1/012011

Google Scholar

[21] T.G.T. Nindhia, Z. Knejzlik, T.S. Nindhia, I W. Surata and T. Ruml, Biocompatibility, Morphology, and Chemical Elements Composition of Indigenous Indonesian Wild Silkmoth Cocoon for Future Application in the Field of Biomaterial, Materials Science and Engineering 761, 012006 (2020), pp.1-6.

DOI: 10.1088/1757-899x/761/1/012006

Google Scholar

[22] A.R. Pamungkas, T.G.T. Nindhia, I W. Surata, T.S. Nindhia, Z. Knejzlik,and T. Ruml, Tensile strength of single fiber of Antheraea pernyi cocoon prepared by various protocols, Vol. 1013 (2020) 69-74.

DOI: 10.4028/www.scientific.net/msf.1013.69

Google Scholar

[23] I G.P.A. Suryawan, N.P.G. Suardana, I N. S. Winaya, I W. B. Suyasa, T.G. T. Nindhia, Study of stinging nettle (urtica dioica l.) Fibers reinforced green composite materials : a review, Materials Science and Engineering,vol. 201, 1, (2017) 1-7.

DOI: 10.1088/1757-899x/201/1/012001

Google Scholar

[24] A.Widnyana, I G. Rian, I W. Surata, T.G.T. Nindhia, Tensile Properties of coconut coir single fiber with alkali treatment and reinforcement effect on unsaturated polyester polymer, Vol. 22, Part 2, (2020) 300-305.

DOI: 10.1016/j.matpr.2019.08.155

Google Scholar

[25] I W. Surata, T.G.T. Nindhia and D.M. Widagdo, Promoting natural fiber from bark of Hibiscus tiliaceus as rope to reduce marine pollution from microplastic fiber yield from synthetic rope, E3S Web of Conferences 158, 04007 (2020) 1-4.

DOI: 10.1051/e3sconf/202015804007

Google Scholar

[26] Sudarisman and Ian J. Davies, Influence of Compressive Pressure, Vacuum Pressure, and Holding Temperature Applied During Autoclave Curing on the Microstructure of Unidirectional CFRP Composites, Advanced Materials Research Vols. 41-42 (2008)323-328.

DOI: 10.4028/www.scientific.net/amr.41-42.323

Google Scholar

[27] M.R. Ishak, Z. Leman, S.M. Sapuan, M.Y. Salleh and S. Misri, The Effect of Sea Water Treatment on The Impact and Flexural Strength of Sugar Palm Fibre Reinforced Epoxy Composites, International Journal of Mechanical and Materials Engineering, Vol. 4, 3, (2009)316-320.

Google Scholar