Structure and Mechanical Properties of Double Side Friction Stir Welded Aluminium AA6061 with the Addition of Cu Powder

Article Preview

Abstract:

The research objective is to investigate the formation of new compounds and the mechanical properties of Double Side Friction Stir Welding (DS-FSW) welding with Cu particle reinforcement. Aluminum alloys of AA6061 and 12 μm Cu powder were chosen as the main materials. The addition of Cu particles is conducted in single groove and double groove. The DS-FSW process uses CNC milling with a feed rate of 80 mm/minute and 1000 rpm of tool rotation. Observation of the microstructure was carried out by using optical metallography, and X-ray diffraction. Microhardness testing was done to determine the mechanical properties of the material. The results showed that the increase in the hardness value of 23.39% occurred in the double groove material. MMCs detected were Al2Cu, and AlCu2Mn.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

111-118

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. S. Mishra and Z. Y. Ma, Friction stir welding and processing,, Mater. Sci. Eng. R Reports, vol. 50, no. 1–2, p.1–78, 2005,.

Google Scholar

[2] A. D. Anggono, T. W. B. Riyadi, Sarjito, D. Triyoko, B. Sugito, and A. Hariyanto, Influence of tool rotation and welding speed on the friction stir welding of AA 1100 and AA 6061-T6,, AIP Conf. Proc., vol. 1977, no. June, 2018,.

DOI: 10.1063/1.5042910

Google Scholar

[3] V. K. Mohan, M. Shamnadh, and A. Sudheer, Fabrication and Characterization of Friction Stir Welding of AA6061 Using Copper Powder,, Mater. Today Proc., vol. 5, no. 11, p.24339–24346, 2018,.

DOI: 10.1016/j.matpr.2018.10.229

Google Scholar

[4] B. Rahmatian, K. Dehghani, and S. E. Mirsalehi, Effect of adding SiC nanoparticles to nugget zone of thick AA5083 aluminium alloy joined by using double-sided friction stir welding,, J. Manuf. Process., vol. 52, no. October 2019, p.152–164, 2020,.

DOI: 10.1016/j.jmapro.2020.01.046

Google Scholar

[5] H. Mehdi and R. S. Mishra, Mechanical and microstructure characterization of friction stir welding for dissimilar alloy-A Review,, Int. J. Res. Eng. Innov., vol. 1, no. 5, p.57–67, 2017, [Online]. Available: http://www.ijrei.com.

Google Scholar

[6] N. Kashaev, V. Ventzke, and G. Çam, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications,, Journal of Manufacturing Processes. 2018,.

DOI: 10.1016/j.jmapro.2018.10.005

Google Scholar

[7] T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys,, Materials and Design. 2014,.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[8] H. A. Derazkola, A. Simchi, and F. Lambiase, Friction stir welding of polycarbonate lap joints: relationship between processing parameters and mechanical properties,, Polym. Test., vol. 79, p.105999, (2019).

DOI: 10.1016/j.polymertesting.2019.105999

Google Scholar

[9] M. Pourali, A. Abdollah-Zadeh, T. Saeid, and F. Kargar, Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds,, J. Alloys Compd., vol. 715, p.1–8, (2017).

DOI: 10.1016/j.jallcom.2017.04.272

Google Scholar

[10] M. Bodaghi and K. Dehghani, Friction stir welding of AA5052: the effects of SiC nano-particles addition,, Int. J. Adv. Manuf. Technol., vol. 88, no. 9–12, p.2651–2660, 2017,.

DOI: 10.1007/s00170-016-8959-8

Google Scholar

[11] Y. F. Sun and H. Fujii, The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints,, Mater. Sci. Eng. A, vol. 528, no. 16–17, p.5470–5475, 2011,.

DOI: 10.1016/j.msea.2011.03.077

Google Scholar

[12] D. R. Ni, D. L. Chen, D. Wang, B. L. Xiao, and Z. Y. Ma, Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet,, Mater. Des., vol. 51, p.199–205, 2013,.

DOI: 10.1016/j.matdes.2013.04.027

Google Scholar

[13] X. G. Chen, M. da Silva, P. Gougeon, and L. St-Georges, Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites,, Mater. Sci. Eng. A, vol. 518, no. 1–2, p.174–184, 2009,.

DOI: 10.1016/j.msea.2009.04.052

Google Scholar

[14] A. Garg and A. Bhattacharya, Influence of Cu powder on strength, failure and metallurgical characterization of single, double pass friction stir welded AA6061-AA7075 joints,, Mater. Sci. Eng. A, vol. 759, no. January, p.661–679, 2019,.

DOI: 10.1016/j.msea.2019.05.067

Google Scholar

[15] S. A. Behmand, S. E. Mirsalehi, H. Omidvar, and M. A. Safarkhanian, Single- and double-pass FSW lap joining of AA5456 sheets with different thicknesses,, Mater. Sci. Technol. (United Kingdom), vol. 32, no. 5, p.438–445, 2016,.

DOI: 10.1179/1743284715y.0000000107

Google Scholar

[16] I. HEJAZI and S. E. MIRSALEHI, Effect of pin penetration depth on double-sided friction stir welded joints of AA6061-T913 alloy,, Trans. Nonferrous Met. Soc. China (English Ed., vol. 26, no. 3, p.676–683, 2016,.

DOI: 10.1016/s1003-6326(16)64158-4

Google Scholar

[17] S. Practice, Standard Practice for Microetching Metals and Alloys ASTM E-407,, vol. 07, no. Reapproved 2015, p.1–22, 2016,.

Google Scholar

[18] Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy,, Mater. Sci. Eng. A, vol. 415, no. 1–2, p.250–254, 2006,.

DOI: 10.1016/j.msea.2005.09.072

Google Scholar

[19] E. Aldanondo, E. Arruti, A. Echeverria, and I. Hurtado, Friction Stir Welding of Lap Joints Using New Al–Li Alloys for Stringer-Skin Joints. Springer International Publishing, (2019).

DOI: 10.1007/978-3-030-05752-7_8

Google Scholar

[20] R. Chandran and S. K. V. Santhanam, Submerged friction stir welding of 6061-T6 aluminium alloy under different water heads,, Mater. Res., vol. 21, no. 6, 2020,.

DOI: 10.1590/1980-5373-mr-2017-1070

Google Scholar

[21] D. D. I. Pantelis1,, P. N. Karakizis1, N. M. Daniolos1, C. A. Charitidis2, E. P. Koumoulos2, Dissimilar Friction Stir Welding of AA5083 with AA6082 Reinforced with SiC Particles,, p.1–41, (2019).

Google Scholar

[22] M. Bahrami, K. Dehghani, M. Kazem, and B. Givi, A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique,, J. Mater., 2013,.

DOI: 10.1016/j.matdes.2013.07.006

Google Scholar

[23] H. Mohammadzadeh et al., Processing – structure – property correlation in nano-SiC-reinforced friction stir welded aluminum joints,, J. Manuf. Process., vol. 21, p.180–189, 2016,.

DOI: 10.1016/j.jmapro.2015.12.008

Google Scholar

[24] E. Kristianto and A. D. Anggono, Analisis Sifat Mekanik dan Struktur Mikro pada Sambungan Las Aluminium dengan Variasi Filler Menggunakan Metode Friction Stir Welding (FSW)., Universitas Muhammadiyah Surakarta, (2017).

DOI: 10.14710/kapal.v16i3.23280

Google Scholar