[1]
L. Zhu, N. Li, P.R.N. Childs, Light-weighting in aerospace component and system design, Propuls. Power Res. 7 (2018) 103–119. https://doi.org/10.1016/j.jppr.2018.04.001.
DOI: 10.1016/j.jppr.2018.04.001
Google Scholar
[2]
J. Fiocchi, A. Tuissi, C.A. Biffi, Heat treatment of aluminium alloys produced by laser powder bed fusion: A review, Mater. Des. 204 (2021). https://doi.org/10.1016/j.matdes.2021.109651.
DOI: 10.1016/j.matdes.2021.109651
Google Scholar
[3]
D.A. Fadare, T.G. Fadara, O.Y. Akanbi, Effect of Heat Treatment on Mechanical Properties and Microstructure of NST 37-2 Steel, J. Miner. Mater. Charact. Eng. 10 (2011) 299–308. https://doi.org/10.4236/jmmce.2011.103020.
DOI: 10.4236/jmmce.2011.103020
Google Scholar
[4]
M. Imran, A.R.A. Khan, Characterization of Al-7075 metal matrix composites: A review, J. Mater. Res. Technol. 8 (2019) 3347–3356. https://doi.org/10.1016/j.jmrt.2017.10.012.
Google Scholar
[5]
B. Zhou, B. Liu, S. Zhang, The advancement of 7xxx series aluminum alloys for aircraft structures: A review, Metals (Basel). 11 (2021). https://doi.org/10.3390/met11050718.
DOI: 10.3390/met11050718
Google Scholar
[6]
H. Panchal, A. Singh, R.J. Akbari, V. Chheta, Effect of Heat-Treatment on Various Properties of Aluminium 7075 : A Review, Int. J. Res. Trends Innov. 5 (2020) 116–123.
Google Scholar
[7]
P. Heugue, D. Larouche, F. Breton, D. Massinon, R. Martinez, X.G. Chen, Precipitation kinetics and evaluation of the interfacial mobility of precipitates in an alsi7cu3.5mg0.15 cast alloy with zr and v additions, Metals (Basel). 9 (2019). https://doi.org/10.3390/met9070777.
DOI: 10.3390/met9070777
Google Scholar
[8]
S.E. Al-lubani, M.E. Matarneh, H.M. Al-wedyan, A.M. Rayes, Heat Treatment of Aluminum Alloy 7449, Int. J. Chem. Mater. Sci. Eng. 7 (2013) 51–56.
Google Scholar
[9]
A. Sabard, H.L. de Villiers Lovelock, T. Hussain, Microstructural Evolution in Solution Heat Treatment of Gas-Atomized Al Alloy (7075) Powder for Cold Spray, J. Therm. Spray Technol. 27 (2018) 145–158. https://doi.org/10.1007/s11666-017-0662-2.
DOI: 10.1007/s11666-017-0662-2
Google Scholar
[10]
S. Kilic, I. Kacar, M. Sahin, F. Ozturk, O. Erdem, Effects of aging temperature, time, and pre-strain on mechanical properties of AA7075, Mater. Res. 22 (2019) 1–13. https://doi.org/10.1590/1980-5373-MR-2019-0006.
DOI: 10.1590/1980-5373-mr-2019-0006
Google Scholar
[11]
H. Jo, M. Kang, G.W. Park, B.J. Kim, C.Y. Choi, H.S. Park, S. Shin, W. Lee, Y.S. Ahn, J.B. Jeon, Effects of cooling rate during quenching and tempering conditions on microstructures and mechanical properties of carbon steel flange, Materials (Basel). 13 (2020). https://doi.org/10.3390/MA13184186.
DOI: 10.3390/ma13184186
Google Scholar
[12]
S. Liu, Y. Zhu, X. Lai, X. Zheng, R. Jia, X. Yuan, Influence of different heat treatment temperatures on the microstructure, corrosion, and mechanical properties behavior of fe-based amorphous/nanocrystalline coatings, Coatings. 9 (2019). https://doi.org/10.3390/coatings9120858.
DOI: 10.3390/coatings9120858
Google Scholar
[13]
M. Szala, G. Winiarski, Ł. Wójcik, T. Bulzak, Effect of annealing time and temperature parameters on the microstructure, hardness, and strain-hardening coefficients of 42CrMo4 steel, Materials (Basel). 13 (2020). https://doi.org/10.3390/MA13092022.
DOI: 10.20944/preprints202004.0147.v1
Google Scholar
[14]
M.H. Abdelaziz, M. Paradis, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of Aluminum Addition on the Microstructure, Tensile Properties, and Fractography of Cast Mg-Based Alloys, Adv. Mater. Sci. Eng. 2017 (2017) 1–11. https://doi.org/10.1155/2017/7408641.
DOI: 10.1155/2017/7408641
Google Scholar
[15]
M. de J.B. Rodríguez, F.A.A. González, M.M.T. Rosas, A Review of the Boiling Curve with Reference to Steel Quenching, Metals (Basel). 11 (2021) 1–17.
Google Scholar
[16]
K.S. Seo, R. Bajracharya, S.H. Lee, H.K. Han, Pharmaceutical application of tablet film coating, Pharmaceutics. 12 (2020) 1–20. https://doi.org/10.3390/pharmaceutics12090853.
DOI: 10.3390/pharmaceutics12090853
Google Scholar