Corrosion Protection on AISI 304 by Shot Peening Treatment with Variation of Particle Size and Shooting Pressure

Article Preview

Abstract:

AISI 304 is widely used as biomedical material due to its lower cost and availability, but low corrosion resistance. The shot peening method can increase the mechanical characteristics and corrosion resistance of a surface. The purpose of this study was to determine the effect of shot peening surface treatment with a combination of steel ball diameter variations and pressure on corrosion resistance of AISI 304 material. Shot peening treatment was carried out using variations of 0.2, 0.5, and 0.8 mm steel ball diameters with a hardness of around 40-50 HRC. Shot peening pressure varies from 7, 8, and 9 bar. Corrosion rate testing was carried out using bovine serum media. The results showed that the best increase in corrosion resistance was 0.117 mpy for a steel ball diameter of 0.5 mm with a pressure of 9 bar, 3 times lower than that of non-treated specimens, which was 0.378 mpy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

153-159

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. R. Buddy, A. S. Hoffman, F. J. Schoen, J. E. Lemon, Biomaterials Science, An Introductions to Materials in Medicine 2ndEdition, Elsevier, California USA, (2004).

Google Scholar

[2] H. Lee, D. Kim, J. Jung, D. Pyon, K. Shin, Corrosion Science, 51, pp.2826-2830, (2009).

Google Scholar

[3] C. Oldani, A. Dominguez, (2012). Titanium as a Biomaterial for Implants: Recent Advances in Arthroplasty ISBN: 978-953-307-990-5, InTech, (2012).

DOI: 10.5772/27413

Google Scholar

[4] G. Manivasagam, D. Dhinasekaran, A. Rajaminickam, Biomedical implants: Corrosion and its Prevention – a Review, (Recent Patents on Corrosion Science 2, pp.40-54, (2010).

DOI: 10.2174/1877610801002010040

Google Scholar

[5] V. Malau, B. H. Priyambodo, P. T. Iswanto, T. Sujitno, Suprapto, Increased Hardness, Corrosion Resistant and Corrosion Fatigue Cracking Performance on AISI 304 by DC Sputtering, International Review of Mechanical Engineering (I.RE.M.E.), 12, pp.975-980, (2018).

DOI: 10.15866/ireme.v12i12.15901

Google Scholar

[6] M. Benedetti, B. Fontanari, P. J. Winiarski, M. Withers, J. C. Allahkarami, Hanan, Procedia Engineering, 109, (2015).

DOI: 10.1016/j.proeng.2015.06.210

Google Scholar

[7] B. H. Priyambodo, V. Malau, P. T. Iswanto, T. Sujitno, Suprapto, The Influence of TiN-Sputtering on Hardness and Corrosion Rate of AISI 304 for Biomaterials Application, Journal of Corrosion Science and Engineering, 20, (2017).

DOI: 10.15866/ireme.v12i12.15901

Google Scholar

[8] D. L. Rios, A. Walley, M. T. Milan, G. Hammersley, Fatigue Crack Initiation and Propagation on Shot-Peened Surfaces in A316 Stainless steel, International Journal of Fatigue, 17, pp.493-499, (1995).

DOI: 10.1016/0142-1123(95)00044-t

Google Scholar

[9] O. Unal, R, Farol, Surface Severe Plastic Deformation of AISI 304 via Conventional Shot Peening, Severe Shot Peening, and Repenning, Journal Surface Science, 351, p.289–295, (2015).

DOI: 10.1016/j.apsusc.2015.05.093

Google Scholar

[10] B. H. Priyambodo, Suhartoyo, S. Slamet, Increased Corrosion Resistance on Cu35%Zn Surface by Shot Peening Process, Journal of Physics: Conference Series, 1430(1), 012055, (2020).

DOI: 10.1088/1742-6596/1430/1/012055

Google Scholar

[11] G. H. Majzoobi, J. Nemati, A. J. Novin, Rozz, G. H. Farrahi, Tribology International, 42, (2009).

Google Scholar

[12] H. Mohassel, F. Malekabadi, M. Jebreili, M. Zehsaz, F. Vakili-Tahami, Effect of Shot Peening on Tribological Behaviors of Molybdenum-Thermal Spray Coating using HVOF Method, Tribology In Industry, 39, pp.100-109, (2017).

DOI: 10.24874/ti.2017.39.01.11

Google Scholar

[13] W. Kim. J. S. Park, S. W. Cho, N. R. Kim, I. Y. Ko, I. J. Shon, Properties and Rapid Consolidation of Binderless Titanium Nitride by Pulsed Current Activated Sintering, Journal of Ceramic Processing Research, 11, pp.627-630, (2010).

Google Scholar

[14] K. Zhan, C. H. Jiang, X. Y. Wu, V. Ji, Surface Layer Characteristics of S30432 Austenite Stainless Steel After Shot Peening, Materials Transactions, 53, No. 5, pp.1002-1006, (2012).

DOI: 10.2320/matertrans.m2011390

Google Scholar

[15] B. H. Priyambodo, V. Malau, P. T. Iswanto, L. D. Setyana, S. Slamet, and Y. Kurniawan, Improve corrosion resistant and corrosion fatigue cracking performance on AISI 304 by shot peening process as alternative biomaterials, J. Corros. Sci. Eng., vol. 22, (2019).

DOI: 10.15866/ireme.v12i12.15901

Google Scholar

[16] Margono, B. H. Priyambodo, R. I. Yaqin, hot Peening on AISI 304 by Various Sizes of Steel Ball Particles to Reduce Corrosion Rates, J. Corros. Sci. Eng., vol. 23, (2021).

Google Scholar

[17] G. S. Junior, J. C. Voorwald, L. F. S. Vieira, M. O. H. Cioffi, R. G. Bonora, Evaluation of WC-10Ni Thermal Spray Coating with Shot Peening on The Fatigue Strength of AISI 4340 Steel, Procedia Engineering, 2, p.649–656, (2010).

DOI: 10.1016/j.proeng.2010.03.070

Google Scholar

[18] ASTM G5-94, Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurement, (1999).

Google Scholar

[19] D. Xiong, Y. Yang, Y. Deng, Bio-Tribological Properties of UHMWPE Against Surface Modified Titanium Alloy, (2013).

DOI: 10.1016/j.surfcoat.2012.05.033

Google Scholar

[20] L. Kang, A. L. Galvin, T. D. Brown, Z. Jin, J. Fisher, Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE, (2008).

DOI: 10.1016/j.jbiomech.2007.09.005

Google Scholar

[21] S. Ge, X. Kang, Y. Zhao, One-year Biodegradation Study of UHMWPE as Artificial Joint Materials: Variation of Chemical Structure and Effect on Friction and Wear Behavior, (2011).

DOI: 10.1016/j.wear.2010.11.048

Google Scholar

[22] G. Singh, H. Singh, B. S. Sidhu, Characterization and Investigation of In-Vitro Corrosion Behavior of Plasma Sprayed Hydroxyapatite and Hydroxyapatite–Calcium Phosphate Coatings on AISI 304. Journal of Corrosion Science and Engineering, 17, (2014).

DOI: 10.1016/j.apsusc.2013.08.013

Google Scholar